Asymptotic properties of solutions of ordinary differential equations with a~large parameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_7_a0,
     author = {A. A. Voronin},
     title = {Asymptotic properties of solutions of ordinary differential equations with a~large parameter},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {7},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_7_a0/}
}
TY  - JOUR
AU  - A. A. Voronin
TI  - Asymptotic properties of solutions of ordinary differential equations with a~large parameter
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 3
EP  - 10
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_7_a0/
LA  - ru
ID  - IVM_1998_7_a0
ER  - 
%0 Journal Article
%A A. A. Voronin
%T Asymptotic properties of solutions of ordinary differential equations with a~large parameter
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 3-10
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_7_a0/
%G ru
%F IVM_1998_7_a0
A. A. Voronin. Asymptotic properties of solutions of ordinary differential equations with a~large parameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_1998_7_a0/

[1] Flatto L., Levinson N., “Periodic solutions of singularly perturbed systems”, J. Rational Mech. and Anal., 4:6 (1955), 943–950 | MR | Zbl

[2] Lewis D. C., “On the role of first integrals in the perturbation of periodic solutions”, Ann. Math., 63:3 (1956), 535–548 | DOI | MR | Zbl

[3] Sazonov V. V., “Periodicheskie resheniya sistem obyknovennykh differentsialnykh uravnenii s bolshim parametrom”, PMM, 47:5 (1983), 707–719 | MR

[4] Sazonov V. V., “O zavisimosti reshenii uravnenii dvizheniya mekhanicheskikh sistem ot bolshogo parametra”, PMM, 54:5 (1990), 709–716 | MR | Zbl