On leaves of Lagrangian foliations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1998), pp. 27-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_6_a3,
     author = {R. Wolak},
     title = {On leaves of {Lagrangian} foliations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--34},
     publisher = {mathdoc},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_6_a3/}
}
TY  - JOUR
AU  - R. Wolak
TI  - On leaves of Lagrangian foliations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 27
EP  - 34
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_6_a3/
LA  - ru
ID  - IVM_1998_6_a3
ER  - 
%0 Journal Article
%A R. Wolak
%T On leaves of Lagrangian foliations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 27-34
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_6_a3/
%G ru
%F IVM_1998_6_a3
R. Wolak. On leaves of Lagrangian foliations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1998), pp. 27-34. http://geodesic.mathdoc.fr/item/IVM_1998_6_a3/

[1] Weinstein A., “Symplectic manifolds and their Lagrangian submanifolds”, Advances in Math., 6:3 (1971), 329–346 | DOI | MR | Zbl

[2] Libermann P., “Sur le problème d'équivalence de certaines structures infinitésimales régulieres”, Ann. mat. pura ed appl., 36 (1954), 27–120 | DOI | MR | Zbl

[3] Hess H., “Connections on symplectic manifolds and geometric quantization”, Springer LN in Math., 836, 153–165 | MR

[4] Inaba T., The tangentially affine structure of lagrangian foliations and the tangentially projective structure of legendrian foliations, Preprint

[5] Gotay M. J., “A class of non-polarisable symplectic manifolds”, Monatsh. Math., 103:1 (1987), 27–30 | DOI | MR | Zbl

[6] Fried D., Goldman W., Hirsch M. W., “Affine manifolds with nilpotent holonomy”, Comment. Math. Helv., 56:4 (1981), 487–523 | DOI | MR | Zbl

[7] Epstein D. B. A., Millet K. C., Tischler D., “Leaves without holonomy”, J. London Math. Soc., 16 (1977), 548–552 | DOI | MR | Zbl

[8] Wolak R., “Ehresmann connections for Lagrangian foliations”, J. Geom. and Phys., 17 (1995), 310–320 | DOI | MR | Zbl

[9] Wolak R., “The structure tensor of a transverse $G$-structure on a foliated manifold”, Boll. U.M.I., 4:1 (1990), 1–15 | MR | Zbl

[10] Wolak R., “Foliated and associated geometric structures on foliated manifolds”, Ann. Fac. Sc. Toulouse, 10:3 (1989), 337–360 | MR | Zbl

[11] Wolak R., Geometric Structures on Foliated Manifolds, Publ. Dept. de Geometría y Topología, Santiago de Compostela, 1989 | MR

[12] Konstant B., Quantization and unitary representations. Prequantization, Lect. Notes Math., 170, 1970

[13] Nguiffo Boyom M., “Variétés symplectiques affines”, Manuscr. math., 64:1 (1989), 1–33 | DOI | MR | Zbl

[14] Nguiffo Boyom M., “Structures localement plates dans certaines variétés symplectiques”, Math. Scand., 76 (1995), 61–84 | MR | Zbl

[15] Wolak R., “Transversely affine foliations compared with affine manifolds”, Quart. J. Math., 41:163 (1990), 369–384 | DOI | MR | Zbl

[16] Wolak R., “Closures of leaves in transversely affine foliations”, Canad. Math. Bull., 34:4 (1991), 553–558 | MR | Zbl

[17] Wolak R., “Transverse completeness of foliated systems of differential equations”, Proc VI-th Inter. Coll. on Differential Geometry (Santiago de Compostela, 1988), ed. L. A. Cordero, Santiago de Compostela, 1989, 253–262 | MR | Zbl

[18] Wolak R., “Leaves in transversely affine foliations”, Differential Geometry, Budapest, 1996 | Zbl

[19] Wolak R., Growth of leaves in transversely affine foliations, To be published

[20] Vaisman I., “$d_f$-cohomology of Lagrangian foliations”, Monatsh. Math., 106:3 (1988), 221–244 | DOI | MR | Zbl

[21] Wolak R., “Foliations admitting transverse systems of differential equations”, Comp. Math., 67:1 (1988), 89–101 | MR | Zbl

[22] Wolak R., “Graphs, Ehresmann connections and vanishing cycles”, Differential Geometry and appl., Proc. 6-th Int. Conf. (Brno, 1995), Brno, 1996, 345–352 | MR | Zbl

[23] Schweitzer P., “Surfaces not quasi-isometric to leaves of foliations of compact $3$-manifolds”, Analysis and Geometry in Foliated Manifolds, Proc. of Santiago de Compostela (1994), World Sc. Publ. Co, 1995 | MR

[24] Goldman W., Hirsch M. W., “The radiance obstruction and parallel forms on affine manifolds”, Trans. Amer. Math. Soc., 286:2 (1984), 629–649 | DOI | MR | Zbl

[25] Goldman W., Hirsch M. W., “Affine manifolds and orbits of algebraic groups”, Trans. Amer. Math. Soc., 295:1 (1986), 175–198 | DOI | MR | Zbl

[26] Epstein D. B. A., “Foliations with all leaves compact”, Ann. Inst. Fourier, 26:1 (1976), 265–282 | MR | Zbl

[27] Vaisman I., “Basics of lagrangian foliations”, Publ. Math. (Barcelona), 33 (1989), 559–575 | MR | Zbl

[28] Wolak R., “Pierrot's theorem for singular Riemannian foliations”, Publ. Matem., 38 (1994), 433–439 | MR | Zbl

[29] Pierrot M., “Orbites des champs feuilletés pour un feuilletage riemannien sur une variété compacte”, Comp. Rend. Acad. Sci. (Paris), 301:9 (1985), 443–445 | MR | Zbl

[30] Molino P., Riemannian Foliations, Progress in Math., 73, 1988 | MR | Zbl