On the geometry of the central projection of an $n$-surface in the Euclidean space $E^{n+m}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1998), pp. 96-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_6_a11,
     author = {M. A. Cheshkova},
     title = {On the geometry of the central projection of an $n$-surface in the {Euclidean} space $E^{n+m}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {96--98},
     publisher = {mathdoc},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_6_a11/}
}
TY  - JOUR
AU  - M. A. Cheshkova
TI  - On the geometry of the central projection of an $n$-surface in the Euclidean space $E^{n+m}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 96
EP  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_6_a11/
LA  - ru
ID  - IVM_1998_6_a11
ER  - 
%0 Journal Article
%A M. A. Cheshkova
%T On the geometry of the central projection of an $n$-surface in the Euclidean space $E^{n+m}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 96-98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_6_a11/
%G ru
%F IVM_1998_6_a11
M. A. Cheshkova. On the geometry of the central projection of an $n$-surface in the Euclidean space $E^{n+m}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1998), pp. 96-98. http://geodesic.mathdoc.fr/item/IVM_1998_6_a11/

[1] Cheshkova M. A., “K geometrii $n$-poverkhnostei v evklidovom prostranstve $E^{2n+1}$”, Differents. geometriya mnogoobrazii figur, 1997, no. 28, 78–81 | Zbl

[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981, 414 pp.

[3] Chen B.-Y., Geometry of submanifolds and its applications, Sci. Univ., Tokyo, 1981, 96 pp. | MR