Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_6_a11, author = {M. A. Cheshkova}, title = {On the geometry of the central projection of an $n$-surface in the {Euclidean} space $E^{n+m}$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {96--98}, publisher = {mathdoc}, number = {6}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_6_a11/} }
TY - JOUR AU - M. A. Cheshkova TI - On the geometry of the central projection of an $n$-surface in the Euclidean space $E^{n+m}$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 96 EP - 98 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_6_a11/ LA - ru ID - IVM_1998_6_a11 ER -
M. A. Cheshkova. On the geometry of the central projection of an $n$-surface in the Euclidean space $E^{n+m}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1998), pp. 96-98. http://geodesic.mathdoc.fr/item/IVM_1998_6_a11/
[1] Cheshkova M. A., “K geometrii $n$-poverkhnostei v evklidovom prostranstve $E^{2n+1}$”, Differents. geometriya mnogoobrazii figur, 1997, no. 28, 78–81 | Zbl
[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981, 414 pp.
[3] Chen B.-Y., Geometry of submanifolds and its applications, Sci. Univ., Tokyo, 1981, 96 pp. | MR