@article{IVM_1998_4_a8,
author = {A. M. Stokolos},
title = {On the strong differentiation of integrals of functions from multidimensional {Hardy} classes},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {64--68},
year = {1998},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1998_4_a8/}
}
A. M. Stokolos. On the strong differentiation of integrals of functions from multidimensional Hardy classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1998), pp. 64-68. http://geodesic.mathdoc.fr/item/IVM_1998_4_a8/
[1] Fefferman C., Stein E. M., “$H^p$-spaces of several variables”, Acta math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl
[2] Sjögren P., Lectures on atomic $H^p$-spaces theory in $R^n$, no. 5, Dep. Math. Univ. Umea, 1981, 58 pp.
[3] Coifman R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl
[4] Janson S., “Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation”, Duke Math. J., 47:4 (1980), 959–982 | DOI | MR | Zbl
[5] Coifman R. R., “A real variable characterization of $H^p$”, Studia Math., 51:3 (1974), 269–274 | MR | Zbl
[6] Latter P. H., “A characterization of $H^p(R^n)$ in terms of atoms”, Studia Math., 62:1 (1978), 93–101 | MR | Zbl
[7] Saks S., “Remarks on the differentiability of the Lebesgue indefinite integral”, Fundam. math., 22 (1934), 257–261