Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_4_a8, author = {A. M. Stokolos}, title = {On the strong differentiation of integrals of functions from multidimensional {Hardy} classes}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {64--68}, publisher = {mathdoc}, number = {4}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_4_a8/} }
TY - JOUR AU - A. M. Stokolos TI - On the strong differentiation of integrals of functions from multidimensional Hardy classes JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 64 EP - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_4_a8/ LA - ru ID - IVM_1998_4_a8 ER -
A. M. Stokolos. On the strong differentiation of integrals of functions from multidimensional Hardy classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1998), pp. 64-68. http://geodesic.mathdoc.fr/item/IVM_1998_4_a8/
[1] Fefferman C., Stein E. M., “$H^p$-spaces of several variables”, Acta math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl
[2] Sjögren P., Lectures on atomic $H^p$-spaces theory in $R^n$, no. 5, Dep. Math. Univ. Umea, 1981, 58 pp.
[3] Coifman R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl
[4] Janson S., “Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation”, Duke Math. J., 47:4 (1980), 959–982 | DOI | MR | Zbl
[5] Coifman R. R., “A real variable characterization of $H^p$”, Studia Math., 51:3 (1974), 269–274 | MR | Zbl
[6] Latter P. H., “A characterization of $H^p(R^n)$ in terms of atoms”, Studia Math., 62:1 (1978), 93–101 | MR | Zbl
[7] Saks S., “Remarks on the differentiability of the Lebesgue indefinite integral”, Fundam. math., 22 (1934), 257–261