The basis property on compact sets of root functions of second-order differential operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1998), pp. 40-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_4_a5,
     author = {I. S. Lomov},
     title = {The basis property on compact sets of root functions of second-order differential operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--52},
     publisher = {mathdoc},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_4_a5/}
}
TY  - JOUR
AU  - I. S. Lomov
TI  - The basis property on compact sets of root functions of second-order differential operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 40
EP  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_4_a5/
LA  - ru
ID  - IVM_1998_4_a5
ER  - 
%0 Journal Article
%A I. S. Lomov
%T The basis property on compact sets of root functions of second-order differential operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 40-52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_4_a5/
%G ru
%F IVM_1998_4_a5
I. S. Lomov. The basis property on compact sets of root functions of second-order differential operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1998), pp. 40-52. http://geodesic.mathdoc.fr/item/IVM_1998_4_a5/

[1] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii, 1”, Differents. uravneniya, 16:5 (1980), 771–794 | MR

[2] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii, 2”, Differents. uravneniya, 16:6 (1980), 980–1006 | MR

[3] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti v $L_p$ i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii i razlozhenii po sistemam eksponent”, DAN SSSR, 273:4 (1983), 789–793 | MR

[4] Ilin V. A., “Ravnoskhodimost s trigonometricheskim ryadom razlozhenii po kornevym funktsiyam odnomernogo operatora Shredingera s kompleksnym potentsialom iz klassa $L_1$”, Differents. uravneniya, 27:4 (1991), 577–597 | MR

[5] Lomov I. S., “O priblizhenii funktsii na otrezke biortogonalnymi ryadami, svyazannymi s differentsialnymi operatorami vtorogo poryadka”, Dokl. RAN, 343:5 (1995), 910–913 | MR

[6] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965, 615 pp. | MR

[7] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965, 537 pp. | MR

[8] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl

[9] Lomov I. S., “Ob approksimatsii funktsii na otrezke spektralnymi razlozheniyami operatora Shredingera”, Vestn. Mosk. un-ta. Ser. matem., mekhan., 1995, no. 4, 43–54 | MR | Zbl

[10] Lomov I. S., “O skorosti ravnoskhodimosti ryadov Fure po sobstvennym funktsiyam operatorov Shturma-Liuvillya v integralnoi metrike”, Differents. uravneniya, 18:9 (1982), 1480–1493 | MR | Zbl

[11] Rykhlov V. S., “O skorosti ravnoskhodimosti dlya differentsialnykh operatorov s nenulevym koeffitsientom pri $(n-1)$-i proizvodnoi”, DAN SSSR, 279:5 (1984), 1053–1056 | MR | Zbl

[12] Lomov I. S., “O skorosti skhodimosti biortogonalnykh ryadov, svyazannykh s differentsialnymi operatorami vtorogo poryadka”, Differents. uravneniya, 32:1 (1996), 71–82 | MR | Zbl

[13] Rykhlov V. S., “Skorost ravnoskhodimosti dlya differentsialnykh operatorov s nenulevym koeffitsientom pri $(n-1)$-i proizvodnoi”, Differents. uravneniya, 26:6 (1990), 975–989 | MR | Zbl

[14] Rykhlov V., “Equiconvergence rate in terms of general moduli of continuity for differential operators”, Results in Math., 29 (1996), 153–168 | MR | Zbl

[15] Kasumov T. B., “Drobnye stepeni kvazidifferentsialnykh operatorov i teoremy o bazisnosti”, Differents. uravneniya, 25:4 (1989), 729–731 | MR | Zbl

[16] Kaufmann F. J., Luther W. J., “Degree of convergence of Birkhoff series, direct and inverse theorems”, J. Math. Anal. and Appl., 187:1 (1994), 156–168 | DOI | MR | Zbl

[17] Benzinger H. E., “The $L_p$ behavior of eigenfunction expansions”, Trans. Amer. Math. Soc., 174:447 (1972), 333–344 | DOI | MR