On the solvability of a~nonstationary problem of the dynamics of an incompressible viscoelastic Kelvin--Voigt fluid of nonzero grade
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1998), pp. 47-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_3_a6,
     author = {T. G. Sukacheva},
     title = {On the solvability of a~nonstationary problem of the dynamics of an incompressible viscoelastic {Kelvin--Voigt} fluid of nonzero grade},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--54},
     publisher = {mathdoc},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_3_a6/}
}
TY  - JOUR
AU  - T. G. Sukacheva
TI  - On the solvability of a~nonstationary problem of the dynamics of an incompressible viscoelastic Kelvin--Voigt fluid of nonzero grade
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 47
EP  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_3_a6/
LA  - ru
ID  - IVM_1998_3_a6
ER  - 
%0 Journal Article
%A T. G. Sukacheva
%T On the solvability of a~nonstationary problem of the dynamics of an incompressible viscoelastic Kelvin--Voigt fluid of nonzero grade
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 47-54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_3_a6/
%G ru
%F IVM_1998_3_a6
T. G. Sukacheva. On the solvability of a~nonstationary problem of the dynamics of an incompressible viscoelastic Kelvin--Voigt fluid of nonzero grade. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1998), pp. 47-54. http://geodesic.mathdoc.fr/item/IVM_1998_3_a6/

[1] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina-Foigta i zhidkostei Oldroita”, Tr. Matem. in-ta AN SSSR, 179, 1988, 126–164 | MR

[2] Sukacheva T. G., Issledovanie fazovykh prostranstv polulineinykh singulyarnykh uravnenii dinamicheskogo tipa, Dis. ...kand. fiz.-matem. nauk, Novgorod, 1990, 112 pp.

[3] Sviridyuk G. A., “Polulineinye uravneniya tipa Soboleva s otnositelno ogranichennym operatorom”, DAN SSSR, 318:4 (1991), 828–831 | MR | Zbl

[4] Sviridyuk G. A., “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Ser. matem., 57:3 (1993), 192–207 | MR | Zbl

[5] Sviridyuk G. A., “Ob odnoi modeli dinamiki slaboszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matematika, 1994, no. 1, 62–70 | MR | Zbl

[6] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere-Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl

[7] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 528 pp. | MR | Zbl

[8] Sviridyuk G. A., Issledovanie polulineinykh uravnenii tipa Soboleva v banakhovykh prostranstvakh, Dis. ...dokt. fiz.-matem. nauk, Chelyabinsk, 1992, 213 pp. | MR

[9] Sviridyuk G. A., Sukacheva T. G., “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl

[10] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zhurn., 31:5 (1990), 109–119 | MR | Zbl

[11] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Du_t=-Au+F(u)$”, Arch. Rat. Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[12] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967, 328 pp.

[13] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[14] Kapitanskii L. V., Piletskas K. N., “O nekotorykh zadachakh vektornogo analiza”, Zap. nauchn. semin. LOMI AN SSSR, 138, 1984, 65–85 | MR