Operator approach to a~geometrically nonlinear problem of static stability of plates and shells
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (1998), pp. 40-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_2_a6,
     author = {V. A. Krys'ko and V. N. Kuznetsov and S. V. Polyakova},
     title = {Operator approach to a~geometrically nonlinear problem of static stability of plates and shells},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--46},
     publisher = {mathdoc},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_2_a6/}
}
TY  - JOUR
AU  - V. A. Krys'ko
AU  - V. N. Kuznetsov
AU  - S. V. Polyakova
TI  - Operator approach to a~geometrically nonlinear problem of static stability of plates and shells
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 40
EP  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_2_a6/
LA  - ru
ID  - IVM_1998_2_a6
ER  - 
%0 Journal Article
%A V. A. Krys'ko
%A V. N. Kuznetsov
%A S. V. Polyakova
%T Operator approach to a~geometrically nonlinear problem of static stability of plates and shells
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 40-46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_2_a6/
%G ru
%F IVM_1998_2_a6
V. A. Krys'ko; V. N. Kuznetsov; S. V. Polyakova. Operator approach to a~geometrically nonlinear problem of static stability of plates and shells. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (1998), pp. 40-46. http://geodesic.mathdoc.fr/item/IVM_1998_2_a6/

[1] Grigolyuk E. I., Kabanov V. V., Ustoichivost obolochek, Nauka, M., 1978, 360 pp. | MR

[2] Krysko V. A., Nelineinaya statika i dinamika neodnorodnykh obolochek, Izd-vo Sarat. un-ta, Saratov, 1976, 212 pp.

[3] Volmir A. S., Ustoichivost deformiruemykh sistem, Nauka, M., 1967, 984 pp.

[4] Volmir A. S., Gibkie plastiny i obolochki, Gostekhizdat, M., 1949, 784 pp.

[5] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972, 437 pp. | MR

[6] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[7] Marguerre K., “Theorie der gekrümmten Platte grosser Formänderung”, Luftfahrforschung (Berlin), 1 (1939), 413–426

[8] Vlasov V. Z., “Osnovy differentsialnykh uravnenii obschei teorii obolochek”, PMM, 8:2 (1944), 109–140 | MR | Zbl

[9] Mushtari Kh. M., Galimov K. Z., Nelineinaya teoriya uprugikh obolochek, Tatknigoizdat, Kazan, 1957

[10] Vorovich I. I., “O suschestvovanii reshenii v nelineinoi teorii obolochek”, Izv. AN SSSR. Ser. matem., 19:4 (1955), 173–186 | Zbl

[11] Morozov N. F., “O nelineinykh kolebaniyakh tonkikh plastin s uchetom inertsii vrascheniya”, DAN SSSR, 176:3 (1967), 522–525 | MR | Zbl

[12] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, 2-e izd., Nauka, M., 1970, 512 pp. | MR | Zbl