@article{IVM_1998_2_a5,
author = {I. E. Koshelev},
title = {Numerical solution of the linear {Fredholm} equation of the first kind by the multigrid method},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {34--39},
year = {1998},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1998_2_a5/}
}
I. E. Koshelev. Numerical solution of the linear Fredholm equation of the first kind by the multigrid method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (1998), pp. 34-39. http://geodesic.mathdoc.fr/item/IVM_1998_2_a5/
[1] Fedorenko R. P., “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, Zhurn. vychisl. matem. i matem. fiz., 4:3 (1964), 559–564 | MR | Zbl
[2] Bakhvalov N. S., “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zhurn. vychisl. matem. i matem. fiz., 6:5 (1966), 861–883 | Zbl
[3] Hackbush W., “Multigrid methods of the second kind”, Multigrid methods for integral and differential equations, eds. Paddons D. J., Holstein H., Clarendon Press, Oxford–New York, 1985, 11–83 | MR
[4] King J. T., “On the construction of preconditioners by subspace decomposition”, J. Comput. and Appl. Math., 29:2 (1990), 195–205 | DOI | MR | Zbl
[5] King J. T., “Multilevel iterative methods for ill-posed problems”, Proc. internat. Conf. Ill-posed probl. in natural sci. (Moscow, 1991), ed. Tikhonov A. N., TVP, Moscow, 1992, 594 | MR
[6] Brandt A., “Multilevel adaptive solution to boundary-value problem”, Math. Comput., 31:138 (1977), 333–390 | DOI | MR | Zbl
[7] Vasin V. V., Metody resheniya neustoichivykh zadach, Izd-vo UrGU, Sverdlovsk, 1989, 94 pp.
[8] Vainikko G. M., Analiz diskretizatsionnykh metodov, Izd-vo. Tart. un-ta, Tartu, 1976, 162 pp. | MR
[9] Koshelev I. E., “Modifikatsiya dvusetochnogo metoda dlya priblizhennogo resheniya operatornykh uravnenii 1-go roda”, Izv. vuzov. Matematika, 1994, no. 1, 25–31 | MR | Zbl