On the Bergman kernel function in quaternion analysis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (1998), pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_2_a13,
     author = {N. L. Vasilevskii and M. V. Shapiro},
     title = {On the {Bergman} kernel function in quaternion analysis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--88},
     publisher = {mathdoc},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_2_a13/}
}
TY  - JOUR
AU  - N. L. Vasilevskii
AU  - M. V. Shapiro
TI  - On the Bergman kernel function in quaternion analysis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 84
EP  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_2_a13/
LA  - ru
ID  - IVM_1998_2_a13
ER  - 
%0 Journal Article
%A N. L. Vasilevskii
%A M. V. Shapiro
%T On the Bergman kernel function in quaternion analysis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 84-88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_2_a13/
%G ru
%F IVM_1998_2_a13
N. L. Vasilevskii; M. V. Shapiro. On the Bergman kernel function in quaternion analysis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (1998), pp. 84-88. http://geodesic.mathdoc.fr/item/IVM_1998_2_a13/

[1] Vasilevskii N. L., Shapiro M. V., Kvaternionnye $\psi$-monogennye funktsii, singulyarnye operatory s kvaternionnym yadrom Koshi i analogi zadachi Rimana, Dep. v UkrNIINTI 06.06.87, No 629-Uk87, Odessk. un-t, Odessa, 1987, 68 pp.

[2] Dzhuraev A., “On a class of systems of singular integral equations on a bounded domain”, Proc. Edinb. Royal Soc. A, 83 (1979), 347–364 | MR | Zbl

[3] Dzhuraev A. D., Metod singulyarnykh integralnykh uravnenii, Nauka, M., 1987, 416 pp. | MR

[4] Dzhuraev A., “On kernel matrices and holomorphic vectors”, Complex Variables, 16 (1991), 43–57 | MR | Zbl

[5] Bergmann S., The kernel function and conformal mappings, AMS, Providence, R. I., 1970, 257 pp. | MR

[6] Brackx F., Delanghe R., Sommen F., Clifford analysis, Pitman, Boston, 1982, 308 pp. | MR | Zbl

[7] Delanghe R., Sommen F., Soucek V., Clifford algebra and spinor valued functions, Kluwer Acad. Publ., Dordrecht, 1992, 485 pp. | MR | Zbl

[8] Fefferman C., “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. Math., 26 (1974), 1–65 | DOI | MR | Zbl

[9] Fefferman C., “Monge-Ampère equations, the Bergman kernel and geometry of pseudoconvex domains”, Ann. Math., 103 (1976), 395–416 | DOI | MR | Zbl

[10] Gilbert J., Murray M., Clifford algebras and Dirac operators in harmonic analysis, Cambridge Univ. Press, 1990, 334 pp. | MR

[11] Gurlebeck K., Sproessig W., Quaternionic analysis and elliptic boundary value problems, Birkhauser, 1990, 254 pp. | MR

[12] Hayman W. K., Kennedy P. B., Subharmonic functions, Academic Press, London–New York–San Francisco, 1976, 284 pp. | MR

[13] Range R. M., Holomorphic functions and integral representations in several complex variables, Springer, New York–Berlin–Heidelberg, 1986, 386 pp. | MR

[14] Shapiro M. V., Vasilevski N. L., “Quaternionic $\psi$-hyperholomorphic functions, singular integral operators and boundary value problems, I”, Complex variables, 27 (1995), 17–46 | MR | Zbl

[15] Shapiro M. V., Vasilevski N. L., On the Bergman kernel function in hyperholomorphic analysis, Reporte Interno No 115, Departamento de Matemáticas, CINVESTAV del I. P. N., Mexico-City, 1993, 35 pp.

[16] Shapiro M. V., Vasilevski N. L., “Quaternionic $\psi$-hyperholomorphic functions, singular integral operators and boundary value problems, II”, Complex variables, 27 (1995), 67–96 | MR | Zbl