Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_2_a10, author = {Yu. I. Solov'ev}, title = {Cauchy formula and {Cauchy-type} integral for a~class of generalized analytic functions.}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {64--68}, publisher = {mathdoc}, number = {2}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_2_a10/} }
TY - JOUR AU - Yu. I. Solov'ev TI - Cauchy formula and Cauchy-type integral for a~class of generalized analytic functions. JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 64 EP - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_2_a10/ LA - ru ID - IVM_1998_2_a10 ER -
Yu. I. Solov'ev. Cauchy formula and Cauchy-type integral for a~class of generalized analytic functions.. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (1998), pp. 64-68. http://geodesic.mathdoc.fr/item/IVM_1998_2_a10/
[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR
[2] Radzhabov N. R., “Integralnye predstavleniya i ikh obraschenie dlya obobschennoi sistemy Koshi-Rimana s singulyarnoi liniei”, DAN TadzhSSR, 11:4 (1968), 14–18 | MR
[3] Volpert V. S., Solovev Yu. I., Odin klass obobschennykh analiticheskikh funktsii, primenyaemykh pri reshenii neosesimmetrichnykh zadach teorii uprugosti dlya tel vrascheniya, Dep. v VINITI 14.12.88, No 8773-B88, Novosib. in-t inzh. zh.d. transporta, Novosibirsk, 1988, 22 pp.
[4] Danilyuk I. I., “Obobschennaya formula Koshi dlya osesimmetricheskikh polei”, Sib. matem. zhurn., 4:1 (1963), 48–85 | Zbl
[5] Aleksandrov A. Ya., Solovev Yu. I., Prostranstvennye zadachi teorii uprugosti (primenenie metodov teorii funktsii kompleksnogo peremennogo), Nauka, M., 1978, 464 pp. | MR
[6] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, 3-e izd., Nauka, M., 1968, 511 pp. | MR