An equiconvergence theorem for higher-order differential operators with a~singularity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1998), pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_1_a5,
     author = {P. M. Kudishin},
     title = {An equiconvergence theorem for higher-order differential operators with a~singularity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--50},
     publisher = {mathdoc},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_1_a5/}
}
TY  - JOUR
AU  - P. M. Kudishin
TI  - An equiconvergence theorem for higher-order differential operators with a~singularity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 41
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_1_a5/
LA  - ru
ID  - IVM_1998_1_a5
ER  - 
%0 Journal Article
%A P. M. Kudishin
%T An equiconvergence theorem for higher-order differential operators with a~singularity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 41-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_1_a5/
%G ru
%F IVM_1998_1_a5
P. M. Kudishin. An equiconvergence theorem for higher-order differential operators with a~singularity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1998), pp. 41-50. http://geodesic.mathdoc.fr/item/IVM_1998_1_a5/

[1] Yurko V. A., “Obratnaya zadacha dlya differentsialnykh uravnenii s osobennostyu”, Differents. uravneniya, 28:8 (1992), 1355–1362 | MR | Zbl

[2] Yurko V. A., “On higher-order differential operators with a singular point”, Inverse Problems, 9:4 (1993), 495–502 | DOI | MR | Zbl

[3] Yurko V. A., “O differentsialnykh operatorakh vysshikh poryadkov s regulyarnoi osobennostyu”, Matem. sb., 186:6 (1995), 133–160 | MR | Zbl

[4] Stone M. H., “A comparison of the series Fourier and Birkhoff”, Trans. Amer. Math. Soc., 28:4 (1926), 695–761 | DOI | MR

[5] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Petrograd, 1917 | Zbl

[6] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114:3 (1981), 378–405 | MR | Zbl

[7] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii”, Differents. uravneniya, 16:5 (1980), 771–794 | MR

[8] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii, II”, Differents. uravneniya, 16:6 (1980), 980–1009 | MR

[9] Minkin A. M., Obschie ryady po sobstvennym i prisoedinennym funktsiyam, Dep v VINITI 30.12.82, No 6481-82, Saratovsk. un-t, Saratov, 1982, 36 pp.

[10] Minkin A. M., Razlozhenie po sobstvennym funktsiyam odnogo klassa negladkikh differentsialnykh operatorov, Dep. v VINITI, No 5407-B87, Red. zhurn. “Differents. uravneniya”, Minsk, 1989, 54 pp.

[11] Naimark M. A., Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969, 526 pp. | MR