On a~one-stage method for solving lexicographic variational inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (1998), pp. 71-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_12_a8,
     author = {L. D. Popov},
     title = {On a~one-stage method for solving lexicographic variational inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--81},
     publisher = {mathdoc},
     number = {12},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_12_a8/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - On a~one-stage method for solving lexicographic variational inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 71
EP  - 81
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_12_a8/
LA  - ru
ID  - IVM_1998_12_a8
ER  - 
%0 Journal Article
%A L. D. Popov
%T On a~one-stage method for solving lexicographic variational inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 71-81
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_12_a8/
%G ru
%F IVM_1998_12_a8
L. D. Popov. On a~one-stage method for solving lexicographic variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (1998), pp. 71-81. http://geodesic.mathdoc.fr/item/IVM_1998_12_a8/

[1] Aubin J. P., Mathematical methods of game and economic theory, North-Holland, Amsterdam, 1979, 619 pp. | MR | Zbl

[2] Cottle R. W., Giannessi F., Lions J. L., Variational inequalities and complemetarity problems: theory and applications, Wiley, New York, 1980 | MR | Zbl

[3] Harker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Mathemat. Program., 48:2 (1990), 161–220 | DOI | MR | Zbl

[4] Eremin I. I., “O zadachakh posledovatelnogo programmirovaniya”, Sib. matem. zhurn., XIV:1 (1973), 124–129 | MR

[5] Fedorov V. V., Chislennye metody maksimina, Nauka, M., 1979, 280 pp. | MR

[6] Harker P. T., Choi S.-C., “A penalty function approach for mathematical programs with variational inequality constraints”, Inform. Decision Technolog., 17:1 (1991), 41–50 | MR | Zbl

[7] Popov L. D., “Approksimatsionnye korni nerazreshimykh uravnenii s monotonnymi otobrazheniyami v levoi chasti”, Izv. vuzov. Matematika, 1993, no. 12, 70–80 | MR | Zbl

[8] Popov L. D., “Lineinaya korrektsiya nesobstvennykh minimaksnykh vypuklo-vognutykh zadach po maksiminnomu kriteriyu”, Zhurn. vychisl. matem. i matem. fiz., 26:9 (1986), 1100–1110 | MR

[9] Kalashnikov V. V., Kalashnikova N. I., “Reshenie dvukhurovnevogo variatsionnogo neravenstva”, Kibernetika i sistemnyi analiz, 1994, no. 6, 178–180 | MR | Zbl

[10] Popov L. D., “Ob odnoetapnom metode resheniya leksikograficheskikh variatsionnykh neravenstv”, Informats. byull. Assotsiatsii matem. programmir., 1997, no. 7, 184–185

[11] Konnov I. V., “O sistemakh variatsionnykh neravenstv”, Izv. vuzov. Matematika, 1997, no. 12, 79–88 | MR | Zbl

[12] Eaves B. C., “On the basic theorem of complementarity”, Math. Programming, 1:1 (1971), 68–75 | DOI | MR | Zbl

[13] Eremin I. I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, DAN SSSR, 256:2 (1981), 272–276 | MR | Zbl

[14] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR