An inexact combined relaxation method for multivalued inclusions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (1998), pp. 58-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_12_a6,
     author = {I. V. Konnov},
     title = {An inexact combined relaxation method for multivalued inclusions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--62},
     publisher = {mathdoc},
     number = {12},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_12_a6/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - An inexact combined relaxation method for multivalued inclusions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 58
EP  - 62
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_12_a6/
LA  - ru
ID  - IVM_1998_12_a6
ER  - 
%0 Journal Article
%A I. V. Konnov
%T An inexact combined relaxation method for multivalued inclusions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 58-62
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_12_a6/
%G ru
%F IVM_1998_12_a6
I. V. Konnov. An inexact combined relaxation method for multivalued inclusions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (1998), pp. 58-62. http://geodesic.mathdoc.fr/item/IVM_1998_12_a6/

[1] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR | Zbl

[2] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 560 pp. | MR

[3] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988, 264 pp. | MR

[4] Konnov I. V., “Odin obschii podkhod k nakhozhdeniyu statsionarnykh tochek i resheniyu smezhnykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 36:5 (1996), 40–50 | MR | Zbl

[5] Konnov I. V., “Kombinirovannye relaksatsionnye metody dlya poiska tochek ravnovesiya i resheniya smezhnykh zadach”, Izv. vuzov. Matematika, 1993, no. 2, 46–53 | MR | Zbl

[6] Konnov I. V., “O skorosti skhodimosti kombinirovannykh relaksatsionnykh metodov”, Izv. vuzov. Matematika, 1993, no. 12, 89–92 | MR | Zbl

[7] Konnov I. V., “A combined relaxation method for variational inequalities with nonlinear constraints”, Math. Programming, 80:2 (1998), 239–252 | DOI | MR | Zbl

[8] Belenkii V. Z., Volkonskii V. A., Ivanov S. A. i dr., Iterativnye metody v teorii igr i programmirovanii, Nauka, M., 1974, 240 pp. | MR

[9] Konnov I. V., Metody nedifferentsiruemoi optimizatsii, Izd-vo Kazansk. un-ta, Kazan, 1993, 100 pp.

[10] Shih M. H., Tan K. K., “Browder-Hartmann-Stampacchia variational inequalities for multi-valued monotone operators”, J. Math. Anal. and Appl., 134:2 (1988), 431–440 | DOI | MR | Zbl

[11] Harker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Programming, 48:2 (1990), 161–220 | DOI | MR | Zbl

[12] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988, 448 pp. | MR

[13] Abramov A. A., Gaipova A. N., “O reshenii nekotorykh uravnenii, soderzhaschikh razryvnye monotonnye preobrazovaniya”, Zhurn. vychisl. matem. i matem. fiz., 12:1 (1972), 204–207 | MR | Zbl

[14] Nemirovskii A. S., “Effektivnye iterativnye metody resheniya uravnenii s monotonnymi operatorami”, Ekonomika i matem. metody, 17:2 (1981), 344–359 | MR

[15] Shor N. Z., “Novye napravleniya v razvitii metodov negladkoi optimizatsii”, Kibernetika, 1977, no. 6, 87–91 | Zbl