A~mixed finite element in an eigenvalue problem of the nonlinear stability of shallow shells
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (1998), pp. 22-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_11_a3,
     author = {V. V. Verbitskii},
     title = {A~mixed finite element in an eigenvalue problem of the nonlinear stability of shallow shells},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--31},
     publisher = {mathdoc},
     number = {11},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_11_a3/}
}
TY  - JOUR
AU  - V. V. Verbitskii
TI  - A~mixed finite element in an eigenvalue problem of the nonlinear stability of shallow shells
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 22
EP  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_11_a3/
LA  - ru
ID  - IVM_1998_11_a3
ER  - 
%0 Journal Article
%A V. V. Verbitskii
%T A~mixed finite element in an eigenvalue problem of the nonlinear stability of shallow shells
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 22-31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_11_a3/
%G ru
%F IVM_1998_11_a3
V. V. Verbitskii. A~mixed finite element in an eigenvalue problem of the nonlinear stability of shallow shells. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (1998), pp. 22-31. http://geodesic.mathdoc.fr/item/IVM_1998_11_a3/

[1] Maslovskaya L. V., Verbitskii V. V., “Skhodimost smeshannogo metoda konechnykh elementov v zadachakh ustoichivosti pologikh obolochek”, Izv. vuzov. Matematika, 1993, no. 10, 21–31 | MR | Zbl

[2] Stumpf H., “The stability equations of the consistent nonlinear elastic shell theory with moderate rotation”, Stability in the Mechanics of Continua, IUTAM - Symp. (Nümbrecht, Germany, 1981), Springer, Berlin–Heidelberg–New York, 1982, 89–100

[3] Stumpf H., “Unified operator description, nonlinear buckling and postbuckling analysis of thin elastic shells”, Mitt. Inst. Mech., no. 34, Ruhr-Univ., Bochum, 1982, 46

[4] Filippovich A. P., “Analiz smeshannykh skhem metoda konechnykh elementov v zadachakh o deformatsii pologikh obolochek”, Zhurn. vychisl. matem. i matem. fiz., 28:5 (1988), 741–754 | MR

[5] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh puchkov, Shtiintsa, Kishinev, 1986, 260 pp. | MR | Zbl

[6] Trofimov V. P., “O kornevykh podprostranstvakh operatorov, analiticheski zavisyaschikh ot parametra”, Matem. issledovaniya, 3, No 3, Kishinev, 1968, 117–125 | MR | Zbl

[7] Krein S. G., Trofimov V. P., “O neterovykh operatorakh, golomorfno zavisyaschikh ot parametrov”, Tr. semin. po funkts. analizu, Voronezh, 1970, 63–85 | MR | Zbl

[8] Vainikko G. M., Karma O. O., “O bystrote skhodimosti priblizhennykh metodov v probleme sobstvennykh znachenii s nelineinym vkhozhdeniem parametra”, Zhurn. vychisl. matem. i matem. fiz., 14:6 (1974), 1393–1408 | MR | Zbl

[9] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[10] Oganesyan A. A., Rivkind V. Ya., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Ch. I, Differents. uravneniya i ikh primeneniya, 5, Vilnyus, 1973, 394 pp. | Zbl