Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_10_a5, author = {S. E. Zhelezovsky}, title = {On the existence and uniqueness of a~solution and the rate of convergence of the {Bubnov--Galerkin} method for a~quasilinear evolution problem in {a~Hilbert} space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {37--45}, publisher = {mathdoc}, number = {10}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_10_a5/} }
TY - JOUR AU - S. E. Zhelezovsky TI - On the existence and uniqueness of a~solution and the rate of convergence of the Bubnov--Galerkin method for a~quasilinear evolution problem in a~Hilbert space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 37 EP - 45 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_10_a5/ LA - ru ID - IVM_1998_10_a5 ER -
%0 Journal Article %A S. E. Zhelezovsky %T On the existence and uniqueness of a~solution and the rate of convergence of the Bubnov--Galerkin method for a~quasilinear evolution problem in a~Hilbert space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1998 %P 37-45 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1998_10_a5/ %G ru %F IVM_1998_10_a5
S. E. Zhelezovsky. On the existence and uniqueness of a~solution and the rate of convergence of the Bubnov--Galerkin method for a~quasilinear evolution problem in a~Hilbert space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1998), pp. 37-45. http://geodesic.mathdoc.fr/item/IVM_1998_10_a5/
[1] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966, 432 pp. | MR
[2] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, DAN SSSR, 116:5 (1957), 752–757 | MR
[3] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii”, Differents. uravneniya, 23:8 (1987), 1407–1416 | MR
[4] Zhelezovskaya L. A., Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya giperbolicheskikh uravnenii”, Differents. uravneniya, 26:2 (1990), 323–333 | MR
[5] Zhelezovskii S. E., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya nelineinoi zadachi teorii uprugikh obolochek”, Differents. uravneniya, 31:5 (1995), 858–869 | MR
[6] Dzhishkariani A. V., “O bystrote skhodimosti metoda Bubnova–Galerkina”, Zhurn. vychisl. matem. i matem. fiz., 4:2 (1964), 343–348
[7] Vainikko G. M., “Nekotorye otsenki pogreshnosti metoda Bubnova–Galerkina. 2: Otsenki $n$-go priblizheniya”, Uchen. zap. Tartusk. un-ta, 1964, no. 150, 202–215 | MR
[8] Zarubin A. G., “Issledovanie proektsionnoi protsedury Galerkina–Petrova metodom drobnykh stepenei”, DAN SSSR, 297:4 (1987), 780–784 | MR | Zbl
[9] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. uravneniya, 26:12 (1990), 2051–2059 | MR | Zbl
[10] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii kolebanii pologikh obolochek”, Izv. AN SSSR. Ser. matem., 21:6 (1957), 747–784
[11] Veliev M. A., Mamedov Ya. D., “Ustoichivost reshenii differentsialnykh uravnenii s nelineinym potentsialnym operatorom v gilbertovom prostranstve”, DAN SSSR, 208:1 (1973), 21–24 | MR | Zbl
[12] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR
[13] Morozov N. F., “Issledovanie kolebanii prizmaticheskogo sterzhnya pod deistviem poperechnoi nagruzki”, Izv. vuzov. Matematika, 1965, no. 3, 121–125 | Zbl
[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Ucheb. posobie. 5-e izd., Nauka, M., 1981, 544 pp. | MR
[15] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR
[16] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Nauka, M., 1971, 372 pp. | Zbl
[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR