On the existence and uniqueness of a~solution and the rate of convergence of the Bubnov--Galerkin method for a~quasilinear evolution problem in a~Hilbert space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1998), pp. 37-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_10_a5,
     author = {S. E. Zhelezovsky},
     title = {On the existence and uniqueness of a~solution and the rate of convergence of the {Bubnov--Galerkin} method for a~quasilinear evolution problem in {a~Hilbert} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--45},
     publisher = {mathdoc},
     number = {10},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_10_a5/}
}
TY  - JOUR
AU  - S. E. Zhelezovsky
TI  - On the existence and uniqueness of a~solution and the rate of convergence of the Bubnov--Galerkin method for a~quasilinear evolution problem in a~Hilbert space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 37
EP  - 45
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_10_a5/
LA  - ru
ID  - IVM_1998_10_a5
ER  - 
%0 Journal Article
%A S. E. Zhelezovsky
%T On the existence and uniqueness of a~solution and the rate of convergence of the Bubnov--Galerkin method for a~quasilinear evolution problem in a~Hilbert space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 37-45
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_10_a5/
%G ru
%F IVM_1998_10_a5
S. E. Zhelezovsky. On the existence and uniqueness of a~solution and the rate of convergence of the Bubnov--Galerkin method for a~quasilinear evolution problem in a~Hilbert space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1998), pp. 37-45. http://geodesic.mathdoc.fr/item/IVM_1998_10_a5/

[1] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966, 432 pp. | MR

[2] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, DAN SSSR, 116:5 (1957), 752–757 | MR

[3] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii”, Differents. uravneniya, 23:8 (1987), 1407–1416 | MR

[4] Zhelezovskaya L. A., Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya giperbolicheskikh uravnenii”, Differents. uravneniya, 26:2 (1990), 323–333 | MR

[5] Zhelezovskii S. E., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya nelineinoi zadachi teorii uprugikh obolochek”, Differents. uravneniya, 31:5 (1995), 858–869 | MR

[6] Dzhishkariani A. V., “O bystrote skhodimosti metoda Bubnova–Galerkina”, Zhurn. vychisl. matem. i matem. fiz., 4:2 (1964), 343–348

[7] Vainikko G. M., “Nekotorye otsenki pogreshnosti metoda Bubnova–Galerkina. 2: Otsenki $n$-go priblizheniya”, Uchen. zap. Tartusk. un-ta, 1964, no. 150, 202–215 | MR

[8] Zarubin A. G., “Issledovanie proektsionnoi protsedury Galerkina–Petrova metodom drobnykh stepenei”, DAN SSSR, 297:4 (1987), 780–784 | MR | Zbl

[9] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. uravneniya, 26:12 (1990), 2051–2059 | MR | Zbl

[10] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii kolebanii pologikh obolochek”, Izv. AN SSSR. Ser. matem., 21:6 (1957), 747–784

[11] Veliev M. A., Mamedov Ya. D., “Ustoichivost reshenii differentsialnykh uravnenii s nelineinym potentsialnym operatorom v gilbertovom prostranstve”, DAN SSSR, 208:1 (1973), 21–24 | MR | Zbl

[12] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[13] Morozov N. F., “Issledovanie kolebanii prizmaticheskogo sterzhnya pod deistviem poperechnoi nagruzki”, Izv. vuzov. Matematika, 1965, no. 3, 121–125 | Zbl

[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Ucheb. posobie. 5-e izd., Nauka, M., 1981, 544 pp. | MR

[15] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[16] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Nauka, M., 1971, 372 pp. | Zbl

[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR