Canonical structures of classical type on regular $\Phi$-spaces, and invariant affine connections
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1998), pp. 23-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_10_a3,
     author = {O. V. Dashevich},
     title = {Canonical structures of classical type on regular $\Phi$-spaces, and invariant affine connections},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--31},
     publisher = {mathdoc},
     number = {10},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_10_a3/}
}
TY  - JOUR
AU  - O. V. Dashevich
TI  - Canonical structures of classical type on regular $\Phi$-spaces, and invariant affine connections
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 23
EP  - 31
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_10_a3/
LA  - ru
ID  - IVM_1998_10_a3
ER  - 
%0 Journal Article
%A O. V. Dashevich
%T Canonical structures of classical type on regular $\Phi$-spaces, and invariant affine connections
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 23-31
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_10_a3/
%G ru
%F IVM_1998_10_a3
O. V. Dashevich. Canonical structures of classical type on regular $\Phi$-spaces, and invariant affine connections. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1998), pp. 23-31. http://geodesic.mathdoc.fr/item/IVM_1998_10_a3/

[1] Balaschenko V. V., Stepanov N. A., “Kanonicheskie affinornye struktury na regulyarnykh $\Phi$-prostranstvakh”, UMN, 46:1 (1991), 205–206 | MR

[2] Kovalskii O., Obobschennye simmetricheskie prostranstva, Mir, M., 1984, 240 pp. | MR

[3] Stepanov N. A., “Odnorodnye $3$-tsiklicheskie prostranstva”, Izv. vuzov. Matematika, 1967, no. 12, 65–74 | MR | Zbl

[4] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76:1 (1954), 33–65 | DOI | MR | Zbl

[5] Yano K., Kon M., Structures on manifolds, World Scientific, Singapore, 1984, 508 pp. | MR

[6] Stepanov N. A., “Osnovnye fakty teorii $\varphi$-prostranstv”, Izv. vuzov. Matematika, 1967, no. 3, 88–95 | Zbl

[7] Fedenko A. S., Prostranstva s simmetriyami, Izd-vo BGU, Minsk, 1977, 167 pp. | MR | Zbl

[8] Balashchenko V., Riemannian geometry of canonical structures on regular $\Phi$-spaces, Preprint No 174, Universität Bochum, Bochum, 1994

[9] Gray A., “Nearly Kähler manifolds”, J. Different. Geom., 4:3 (1970), 283–309 | MR | Zbl

[10] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981, 414 pp.

[11] Gray A., “Riemannian manifolds with geodesic symmetries of order $3$”, J. Different. Geom., 7:3–4 (1972), 343–369 | MR | Zbl

[12] Balaschenko V. V., Churbanov Yu. D., “Invariantnye struktury na odnorodnykh $\Phi$-prostranstvakh poryadka $5$”, UMN, 45:1 (1990), 169–170 | MR

[13] Churbanov Yu. D., “O nekotorykh klassakh odnorodnykh $\Phi$-prostranstv poryadka $5$”, Izv. vuzov. Matematika, 1992, no. 2, 88–90 | MR | Zbl

[14] Balaschenko V. V., Dashevich O. V., “Geometriya kanonicheskikh struktur na odnorodnykh $\Phi$-prostranstvakh poryadka $4$”, UMN, 49:4 (1994), 153–154