On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1996), pp. 27-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1996_9_a4,
     author = {N. K. Karapetyants and V. L. Ochirova},
     title = {On a necessary condition for the convergence of averages at {Lebesgue} $p$-points of functions from $L_p$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--33},
     publisher = {mathdoc},
     number = {9},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1996_9_a4/}
}
TY  - JOUR
AU  - N. K. Karapetyants
AU  - V. L. Ochirova
TI  - On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1996
SP  - 27
EP  - 33
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1996_9_a4/
LA  - ru
ID  - IVM_1996_9_a4
ER  - 
%0 Journal Article
%A N. K. Karapetyants
%A V. L. Ochirova
%T On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1996
%P 27-33
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1996_9_a4/
%G ru
%F IVM_1996_9_a4
N. K. Karapetyants; V. L. Ochirova. On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1996), pp. 27-33. http://geodesic.mathdoc.fr/item/IVM_1996_9_a4/