Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1996_9_a4, author = {N. K. Karapetyants and V. L. Ochirova}, title = {On a necessary condition for the convergence of averages at {Lebesgue} $p$-points of functions from $L_p$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--33}, publisher = {mathdoc}, number = {9}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1996_9_a4/} }
TY - JOUR AU - N. K. Karapetyants AU - V. L. Ochirova TI - On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1996 SP - 27 EP - 33 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1996_9_a4/ LA - ru ID - IVM_1996_9_a4 ER -
%0 Journal Article %A N. K. Karapetyants %A V. L. Ochirova %T On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1996 %P 27-33 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1996_9_a4/ %G ru %F IVM_1996_9_a4
N. K. Karapetyants; V. L. Ochirova. On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1996), pp. 27-33. http://geodesic.mathdoc.fr/item/IVM_1996_9_a4/