The languages ${\rm PQL}$ and ${\rm FO}+{\rm LFP}$ are equivalent even without the presence of order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1996), pp. 18-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1996_4_a2,
     author = {A. Yu. Baryshnikov and A. B. Livchak},
     title = {The languages ${\rm PQL}$ and ${\rm FO}+{\rm LFP}$ are equivalent even without the presence of order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--23},
     publisher = {mathdoc},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1996_4_a2/}
}
TY  - JOUR
AU  - A. Yu. Baryshnikov
AU  - A. B. Livchak
TI  - The languages ${\rm PQL}$ and ${\rm FO}+{\rm LFP}$ are equivalent even without the presence of order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1996
SP  - 18
EP  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1996_4_a2/
LA  - ru
ID  - IVM_1996_4_a2
ER  - 
%0 Journal Article
%A A. Yu. Baryshnikov
%A A. B. Livchak
%T The languages ${\rm PQL}$ and ${\rm FO}+{\rm LFP}$ are equivalent even without the presence of order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1996
%P 18-23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1996_4_a2/
%G ru
%F IVM_1996_4_a2
A. Yu. Baryshnikov; A. B. Livchak. The languages ${\rm PQL}$ and ${\rm FO}+{\rm LFP}$ are equivalent even without the presence of order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1996), pp. 18-23. http://geodesic.mathdoc.fr/item/IVM_1996_4_a2/