Characterization of the Chebyshev spline of best approximation in the nonsymmetric norm of $L_1(a,b)$ with a positive weight for a class of continuous functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1992), pp. 45-50
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1992_3_a7,
author = {V. S. Rom{\cyra}{\cyrn}{\cyro}{\cyrv}},
title = {Characterization of the {Chebyshev} spline of best approximation in the nonsymmetric norm of $L_1(a,b)$ with a~positive weight for a~class of continuous functions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {45--50},
year = {1992},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1992_3_a7/}
}
TY - JOUR AU - V. S. Romанов TI - Characterization of the Chebyshev spline of best approximation in the nonsymmetric norm of $L_1(a,b)$ with a positive weight for a class of continuous functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1992 SP - 45 EP - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/IVM_1992_3_a7/ LA - ru ID - IVM_1992_3_a7 ER -
%0 Journal Article %A V. S. Romанов %T Characterization of the Chebyshev spline of best approximation in the nonsymmetric norm of $L_1(a,b)$ with a positive weight for a class of continuous functions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1992 %P 45-50 %N 3 %U http://geodesic.mathdoc.fr/item/IVM_1992_3_a7/ %G ru %F IVM_1992_3_a7
V. S. Romанов. Characterization of the Chebyshev spline of best approximation in the nonsymmetric norm of $L_1(a,b)$ with a positive weight for a class of continuous functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1992), pp. 45-50. http://geodesic.mathdoc.fr/item/IVM_1992_3_a7/