Cubature formulas with a minimal number of nodes for a centrally-symmetric $n$-dimensional integral
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1990), pp. 50-57
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1990_3_a7,
author = {G. G. Rasputin},
title = {Cubature formulas with a~minimal number of nodes for a~centrally-symmetric $n$-dimensional integral},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {50--57},
year = {1990},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1990_3_a7/}
}
TY - JOUR AU - G. G. Rasputin TI - Cubature formulas with a minimal number of nodes for a centrally-symmetric $n$-dimensional integral JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1990 SP - 50 EP - 57 IS - 3 UR - http://geodesic.mathdoc.fr/item/IVM_1990_3_a7/ LA - ru ID - IVM_1990_3_a7 ER -
G. G. Rasputin. Cubature formulas with a minimal number of nodes for a centrally-symmetric $n$-dimensional integral. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1990), pp. 50-57. http://geodesic.mathdoc.fr/item/IVM_1990_3_a7/