Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1988_5_a8, author = {V. S. Rom{\cyra}{\cyrn}{\cyro}{\cyrv}}, title = {Uniqueness of {a~Chebyshev} spline of best $(\alpha,\beta)$-approximation in metric $L_1$ for the class of continuous functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {57--62}, publisher = {mathdoc}, number = {5}, year = {1988}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1988_5_a8/} }
TY - JOUR AU - V. S. Romанов TI - Uniqueness of a~Chebyshev spline of best $(\alpha,\beta)$-approximation in metric $L_1$ for the class of continuous functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1988 SP - 57 EP - 62 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1988_5_a8/ LA - ru ID - IVM_1988_5_a8 ER -
%0 Journal Article %A V. S. Romанов %T Uniqueness of a~Chebyshev spline of best $(\alpha,\beta)$-approximation in metric $L_1$ for the class of continuous functions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1988 %P 57-62 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1988_5_a8/ %G ru %F IVM_1988_5_a8
V. S. Romанов. Uniqueness of a~Chebyshev spline of best $(\alpha,\beta)$-approximation in metric $L_1$ for the class of continuous functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1988), pp. 57-62. http://geodesic.mathdoc.fr/item/IVM_1988_5_a8/