The existence of a~function with given growth characteristics that is holomorphic in an unbounded Reinhardt domain in $C^n$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1985), pp. 71-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1985_6_a10,
     author = {E. I. Yakovlev},
     title = {The existence of a~function with given growth characteristics that is holomorphic in an unbounded {Reinhardt} domain in $C^n$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--76},
     publisher = {mathdoc},
     number = {6},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1985_6_a10/}
}
TY  - JOUR
AU  - E. I. Yakovlev
TI  - The existence of a~function with given growth characteristics that is holomorphic in an unbounded Reinhardt domain in $C^n$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1985
SP  - 71
EP  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1985_6_a10/
LA  - ru
ID  - IVM_1985_6_a10
ER  - 
%0 Journal Article
%A E. I. Yakovlev
%T The existence of a~function with given growth characteristics that is holomorphic in an unbounded Reinhardt domain in $C^n$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1985
%P 71-76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1985_6_a10/
%G ru
%F IVM_1985_6_a10
E. I. Yakovlev. The existence of a~function with given growth characteristics that is holomorphic in an unbounded Reinhardt domain in $C^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1985), pp. 71-76. http://geodesic.mathdoc.fr/item/IVM_1985_6_a10/