Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1985_6_a10, author = {E. I. Yakovlev}, title = {The existence of a~function with given growth characteristics that is holomorphic in an unbounded {Reinhardt} domain in $C^n$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {71--76}, publisher = {mathdoc}, number = {6}, year = {1985}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1985_6_a10/} }
TY - JOUR AU - E. I. Yakovlev TI - The existence of a~function with given growth characteristics that is holomorphic in an unbounded Reinhardt domain in $C^n$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1985 SP - 71 EP - 76 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1985_6_a10/ LA - ru ID - IVM_1985_6_a10 ER -
%0 Journal Article %A E. I. Yakovlev %T The existence of a~function with given growth characteristics that is holomorphic in an unbounded Reinhardt domain in $C^n$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1985 %P 71-76 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1985_6_a10/ %G ru %F IVM_1985_6_a10
E. I. Yakovlev. The existence of a~function with given growth characteristics that is holomorphic in an unbounded Reinhardt domain in $C^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1985), pp. 71-76. http://geodesic.mathdoc.fr/item/IVM_1985_6_a10/