Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (1979), pp. 65-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1979_11_a8,
     author = {Yu. T. Tkachenko},
     title = {Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--68},
     publisher = {mathdoc},
     number = {11},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1979_11_a8/}
}
TY  - JOUR
AU  - Yu. T. Tkachenko
TI  - Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1979
SP  - 65
EP  - 68
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1979_11_a8/
LA  - ru
ID  - IVM_1979_11_a8
ER  - 
%0 Journal Article
%A Yu. T. Tkachenko
%T Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1979
%P 65-68
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1979_11_a8/
%G ru
%F IVM_1979_11_a8
Yu. T. Tkachenko. Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (1979), pp. 65-68. http://geodesic.mathdoc.fr/item/IVM_1979_11_a8/