Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (1979), pp. 65-68
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1979_11_a8,
author = {Yu. T. Tkachenko},
title = {Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {65--68},
publisher = {mathdoc},
number = {11},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1979_11_a8/}
}
TY - JOUR AU - Yu. T. Tkachenko TI - Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1979 SP - 65 EP - 68 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1979_11_a8/ LA - ru ID - IVM_1979_11_a8 ER -
Yu. T. Tkachenko. Maximal sets of integers that do not contain an arithmetic progression of length~3 on $[0;3^n-1]$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (1979), pp. 65-68. http://geodesic.mathdoc.fr/item/IVM_1979_11_a8/