The almost Grassmann manifold that is connected with an $(n+1)$-web of multidimensional surfaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1975), pp. 29-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1975_8_a4,
     author = {V. V. Goldberg},
     title = {The almost {Grassmann} manifold that is connected with an $(n+1)$-web of multidimensional surfaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--38},
     publisher = {mathdoc},
     number = {8},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1975_8_a4/}
}
TY  - JOUR
AU  - V. V. Goldberg
TI  - The almost Grassmann manifold that is connected with an $(n+1)$-web of multidimensional surfaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1975
SP  - 29
EP  - 38
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1975_8_a4/
LA  - ru
ID  - IVM_1975_8_a4
ER  - 
%0 Journal Article
%A V. V. Goldberg
%T The almost Grassmann manifold that is connected with an $(n+1)$-web of multidimensional surfaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1975
%P 29-38
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1975_8_a4/
%G ru
%F IVM_1975_8_a4
V. V. Goldberg. The almost Grassmann manifold that is connected with an $(n+1)$-web of multidimensional surfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1975), pp. 29-38. http://geodesic.mathdoc.fr/item/IVM_1975_8_a4/