The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1975), pp. 94-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1975_10_a13,
     author = {V. A. Romanovich},
     title = {The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {94--96},
     publisher = {mathdoc},
     number = {10},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1975_10_a13/}
}
TY  - JOUR
AU  - V. A. Romanovich
TI  - The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1975
SP  - 94
EP  - 96
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1975_10_a13/
LA  - ru
ID  - IVM_1975_10_a13
ER  - 
%0 Journal Article
%A V. A. Romanovich
%T The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1975
%P 94-96
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1975_10_a13/
%G ru
%F IVM_1975_10_a13
V. A. Romanovich. The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1975), pp. 94-96. http://geodesic.mathdoc.fr/item/IVM_1975_10_a13/