The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1975), pp. 94-96
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1975_10_a13,
author = {V. A. Romanovich},
title = {The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {94--96},
publisher = {mathdoc},
number = {10},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1975_10_a13/}
}
TY - JOUR AU - V. A. Romanovich TI - The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1975 SP - 94 EP - 96 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1975_10_a13/ LA - ru ID - IVM_1975_10_a13 ER -
%0 Journal Article %A V. A. Romanovich %T The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1975 %P 94-96 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1975_10_a13/ %G ru %F IVM_1975_10_a13
V. A. Romanovich. The maximal partial correlation coefficient of two $\sigma$-algebras relative to a~third $\sigma$-algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1975), pp. 94-96. http://geodesic.mathdoc.fr/item/IVM_1975_10_a13/