The geometry of a three-dimensional surface $V_3$ of carrying four families of rectilinear generators in a five-dimensional projective space $P_5$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1975), pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1975_10_a0,
author = {Kh. A. Baimuratov},
title = {The geometry of a three-dimensional surface~$V_3$ of carrying four families of rectilinear generators in a five-dimensional projective space~$P_5$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--14},
year = {1975},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1975_10_a0/}
}
TY - JOUR AU - Kh. A. Baimuratov TI - The geometry of a three-dimensional surface $V_3$ of carrying four families of rectilinear generators in a five-dimensional projective space $P_5$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1975 SP - 3 EP - 14 IS - 10 UR - http://geodesic.mathdoc.fr/item/IVM_1975_10_a0/ LA - ru ID - IVM_1975_10_a0 ER -
%0 Journal Article %A Kh. A. Baimuratov %T The geometry of a three-dimensional surface $V_3$ of carrying four families of rectilinear generators in a five-dimensional projective space $P_5$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1975 %P 3-14 %N 10 %U http://geodesic.mathdoc.fr/item/IVM_1975_10_a0/ %G ru %F IVM_1975_10_a0
Kh. A. Baimuratov. The geometry of a three-dimensional surface $V_3$ of carrying four families of rectilinear generators in a five-dimensional projective space $P_5$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1975), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_1975_10_a0/