A~discrete analogue of Luk\'acs's theorem, and its application
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1974), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1974_8_a2,
     author = {D. L. Berman},
     title = {A~discrete analogue of {Luk\'acs's} theorem, and its application},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--21},
     publisher = {mathdoc},
     number = {8},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1974_8_a2/}
}
TY  - JOUR
AU  - D. L. Berman
TI  - A~discrete analogue of Luk\'acs's theorem, and its application
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1974
SP  - 16
EP  - 21
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1974_8_a2/
LA  - ru
ID  - IVM_1974_8_a2
ER  - 
%0 Journal Article
%A D. L. Berman
%T A~discrete analogue of Luk\'acs's theorem, and its application
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1974
%P 16-21
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1974_8_a2/
%G ru
%F IVM_1974_8_a2
D. L. Berman. A~discrete analogue of Luk\'acs's theorem, and its application. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1974), pp. 16-21. http://geodesic.mathdoc.fr/item/IVM_1974_8_a2/