Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1973_9_a8, author = {N. V. Stepanov}, title = {Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {61--69}, publisher = {mathdoc}, number = {9}, year = {1973}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/} }
TY - JOUR AU - N. V. Stepanov TI - Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1973 SP - 61 EP - 69 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/ LA - ru ID - IVM_1973_9_a8 ER -
%0 Journal Article %A N. V. Stepanov %T Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1973 %P 61-69 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/ %G ru %F IVM_1973_9_a8
N. V. Stepanov. Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1973), pp. 61-69. http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/