Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1973), pp. 61-69
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1973_9_a8,
author = {N. V. Stepanov},
title = {Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {61--69},
publisher = {mathdoc},
number = {9},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/}
}
TY - JOUR
AU - N. V. Stepanov
TI - Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 1973
SP - 61
EP - 69
IS - 9
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/
LA - ru
ID - IVM_1973_9_a8
ER -
%0 Journal Article
%A N. V. Stepanov
%T Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1973
%P 61-69
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/
%G ru
%F IVM_1973_9_a8
N. V. Stepanov. Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1973), pp. 61-69. http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/