Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1973), pp. 61-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1973_9_a8,
     author = {N. V. Stepanov},
     title = {Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--69},
     publisher = {mathdoc},
     number = {9},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/}
}
TY  - JOUR
AU  - N. V. Stepanov
TI  - Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1973
SP  - 61
EP  - 69
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/
LA  - ru
ID  - IVM_1973_9_a8
ER  - 
%0 Journal Article
%A N. V. Stepanov
%T Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1973
%P 61-69
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/
%G ru
%F IVM_1973_9_a8
N. V. Stepanov. Existence of a~fundamental-group connection invariantly associated with the equation $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1973), pp. 61-69. http://geodesic.mathdoc.fr/item/IVM_1973_9_a8/