The best mean square approximation, by polynomials and by entire functions of finite degree, of functions which have algebraic singular point
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1969), pp. 59-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1969_4_a9,
     author = {R. A. Raitsin},
     title = {The best mean square approximation, by polynomials and by entire functions of finite degree, of functions which have algebraic singular point},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--61},
     publisher = {mathdoc},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1969_4_a9/}
}
TY  - JOUR
AU  - R. A. Raitsin
TI  - The best mean square approximation, by polynomials and by entire functions of finite degree, of functions which have algebraic singular point
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1969
SP  - 59
EP  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1969_4_a9/
LA  - ru
ID  - IVM_1969_4_a9
ER  - 
%0 Journal Article
%A R. A. Raitsin
%T The best mean square approximation, by polynomials and by entire functions of finite degree, of functions which have algebraic singular point
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1969
%P 59-61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1969_4_a9/
%G ru
%F IVM_1969_4_a9
R. A. Raitsin. The best mean square approximation, by polynomials and by entire functions of finite degree, of functions which have algebraic singular point. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1969), pp. 59-61. http://geodesic.mathdoc.fr/item/IVM_1969_4_a9/