Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1969_1_a14, author = {F. N. Yasinskii}, title = {The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {106--108}, publisher = {mathdoc}, number = {1}, year = {1969}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1969_1_a14/} }
TY - JOUR AU - F. N. Yasinskii TI - The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1969 SP - 106 EP - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1969_1_a14/ LA - ru ID - IVM_1969_1_a14 ER -
%0 Journal Article %A F. N. Yasinskii %T The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1969 %P 106-108 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1969_1_a14/ %G ru %F IVM_1969_1_a14
F. N. Yasinskii. The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1969), pp. 106-108. http://geodesic.mathdoc.fr/item/IVM_1969_1_a14/