The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1969), pp. 106-108
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1969_1_a14,
author = {F. N. Yasinskii},
title = {The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {106--108},
publisher = {mathdoc},
number = {1},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1969_1_a14/}
}
TY - JOUR
AU - F. N. Yasinskii
TI - The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 1969
SP - 106
EP - 108
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IVM_1969_1_a14/
LA - ru
ID - IVM_1969_1_a14
ER -
%0 Journal Article
%A F. N. Yasinskii
%T The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1969
%P 106-108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1969_1_a14/
%G ru
%F IVM_1969_1_a14
F. N. Yasinskii. The approximation of functions in $\mathbf C^m$ by means of a~system in $\mathbf C^{m+s}$ which is orthonormalized in $L^2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1969), pp. 106-108. http://geodesic.mathdoc.fr/item/IVM_1969_1_a14/