Generalization of a problem for a hypersurface in $E_{n+1}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1963), pp. 52-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1963_3_a7,
     author = {N. P. Kamenskii},
     title = {Generalization of a problem for a hypersurface in $E_{n+1}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--55},
     publisher = {mathdoc},
     number = {3},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1963_3_a7/}
}
TY  - JOUR
AU  - N. P. Kamenskii
TI  - Generalization of a problem for a hypersurface in $E_{n+1}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1963
SP  - 52
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1963_3_a7/
LA  - ru
ID  - IVM_1963_3_a7
ER  - 
%0 Journal Article
%A N. P. Kamenskii
%T Generalization of a problem for a hypersurface in $E_{n+1}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1963
%P 52-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1963_3_a7/
%G ru
%F IVM_1963_3_a7
N. P. Kamenskii. Generalization of a problem for a hypersurface in $E_{n+1}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1963), pp. 52-55. http://geodesic.mathdoc.fr/item/IVM_1963_3_a7/