Entropy information approach for evaluating the quality of machine translation texts
Informacionnye tehnologii i vyčislitelnye sistemy, no. 4 (2023), pp. 19-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the entropy-information approach, a method for assessing the quality of machine translation texts is proposed. An analysis is given of the dispersion and entropy coefficients of concordance used to assess the consistency of expert opinions with close rankings of various objects. The prospects of using the entropy coefficient of concordance, which makes it possible to fix the fact of division of opinions into two opposing groups, are substantiated. This provision is important for the study, since in this method of expert evaluation of text translations, it is important to take into account the different opinions of several experts involved in the examination. Examples of calculating the entropy coefficient of concordance with a changing rank system, the number of experts and ranked evaluation objects are given.
Mots-clés : concrodation coefficient, expert opinion matrix
Keywords: text ranking, expert opinion, information entropy, rank, probabilistic parameters.
@article{ITVS_2023_4_a2,
     author = {G. N. Akhobadze and E. Yu. Rusyaeva and A. V. Poltavsky},
     title = {Entropy information approach for evaluating the quality of machine translation texts},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {19--27},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ITVS_2023_4_a2/}
}
TY  - JOUR
AU  - G. N. Akhobadze
AU  - E. Yu. Rusyaeva
AU  - A. V. Poltavsky
TI  - Entropy information approach for evaluating the quality of machine translation texts
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2023
SP  - 19
EP  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ITVS_2023_4_a2/
LA  - ru
ID  - ITVS_2023_4_a2
ER  - 
%0 Journal Article
%A G. N. Akhobadze
%A E. Yu. Rusyaeva
%A A. V. Poltavsky
%T Entropy information approach for evaluating the quality of machine translation texts
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2023
%P 19-27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ITVS_2023_4_a2/
%G ru
%F ITVS_2023_4_a2
G. N. Akhobadze; E. Yu. Rusyaeva; A. V. Poltavsky. Entropy information approach for evaluating the quality of machine translation texts. Informacionnye tehnologii i vyčislitelnye sistemy, no. 4 (2023), pp. 19-27. http://geodesic.mathdoc.fr/item/ITVS_2023_4_a2/