Forecasting of COVID-19 dynamics in EU using randomized machine learning applied to dynamic models
Informacionnye tehnologii i vyčislitelnye sistemy, no. 3 (2022), pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to application of the theory of Randomized Machine Learning to forecasting of the COVID-19 pandemic based on SIR epidemiological model. We propose two modelling variants, the first is based on estimation of SIR model using real case data, the second is based on the idea of modelling transmission coefficient and its prediction. Comparative study of proposed approach is based on a comparison with the standard least squares approach and is carried out on a dataset of several countries of the European Union. It is shown the performance of the proposed approach and its effectiveness and adequacy under conditions of small amount of data with a high level of uncertainty.
Keywords: epidemic modelling, randomized machine learning, entropy, entropy estimation, forecasting, randomized forecasting.
@article{ITVS_2022_3_a6,
     author = {A. Yu. Popkov and Yu. A. Dubnov and Yu. S. Popkov},
     title = {Forecasting of {COVID-19} dynamics in {EU} using randomized machine learning applied to dynamic models},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {67--78},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ITVS_2022_3_a6/}
}
TY  - JOUR
AU  - A. Yu. Popkov
AU  - Yu. A. Dubnov
AU  - Yu. S. Popkov
TI  - Forecasting of COVID-19 dynamics in EU using randomized machine learning applied to dynamic models
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2022
SP  - 67
EP  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ITVS_2022_3_a6/
LA  - ru
ID  - ITVS_2022_3_a6
ER  - 
%0 Journal Article
%A A. Yu. Popkov
%A Yu. A. Dubnov
%A Yu. S. Popkov
%T Forecasting of COVID-19 dynamics in EU using randomized machine learning applied to dynamic models
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2022
%P 67-78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ITVS_2022_3_a6/
%G ru
%F ITVS_2022_3_a6
A. Yu. Popkov; Yu. A. Dubnov; Yu. S. Popkov. Forecasting of COVID-19 dynamics in EU using randomized machine learning applied to dynamic models. Informacionnye tehnologii i vyčislitelnye sistemy, no. 3 (2022), pp. 67-78. http://geodesic.mathdoc.fr/item/ITVS_2022_3_a6/