Fast and gate-efficient approximated activations for bipolar morphological neural networks
Informacionnye tehnologii i vyčislitelnye sistemy, no. 2 (2022), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bipolar morphological neural networks are aimed at efficient hardware implementation without multiplications inside the convolutional layers. However, they use resource demanding activation functions based on binary logarithm and exponent. In this paper, the computationally efficient approximations for activation functions of bipolar morphological neural networks are considered. Mitchell's approximation is used for binary logarithm and demonstrates 12 times decrease in the estimated logic gate number and latency. Schraudolph's approximation used for exponent has 3 times lower logic gates complexity and latency. The usage of approximate activation functions provides a 12–40% latency decrease for the BM convolutional layers with a small number of input channels and 3 $\times$ 3 filters compared to standard ones. The experiments show that these approximations can be used in the BM ResNet trained for classification task with a reasonable recognition accuracy decreasing from 99.08% to 98.90%.
Keywords: bipolar morphological networks, approximations, computational efficiency.
@article{ITVS_2022_2_a0,
     author = {E. E. Limonova},
     title = {Fast and gate-efficient approximated activations for bipolar morphological neural networks},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {3--10},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ITVS_2022_2_a0/}
}
TY  - JOUR
AU  - E. E. Limonova
TI  - Fast and gate-efficient approximated activations for bipolar morphological neural networks
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2022
SP  - 3
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ITVS_2022_2_a0/
LA  - en
ID  - ITVS_2022_2_a0
ER  - 
%0 Journal Article
%A E. E. Limonova
%T Fast and gate-efficient approximated activations for bipolar morphological neural networks
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2022
%P 3-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ITVS_2022_2_a0/
%G en
%F ITVS_2022_2_a0
E. E. Limonova. Fast and gate-efficient approximated activations for bipolar morphological neural networks. Informacionnye tehnologii i vyčislitelnye sistemy, no. 2 (2022), pp. 3-10. http://geodesic.mathdoc.fr/item/ITVS_2022_2_a0/