Weighted admissible absolute 1-center problem
Informacionnye tehnologii i vyčislitelnye sistemy, no. 2 (2020), pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper presents a polynomial algorithm for new generalization of the absolute 1-center problem (A1CP) in general undirected graph with each edge having a positive weight vector (length for the first coordinate and costs for all the other coordinates) and with each vertex having non-negative weight vector. We assume that the cost is a linear function of the length on edge. Non-negative cost boundaries are also given. AA1CP (admissible absolute 1-center problem) minimizes the weighted length of path between a point on edge and the farthest vertex provided that any weighted cost of path from the point to any vertex does not exceed the corresponding cost boundary.
Keywords:
vertex-weighted absolute 1-center problem, admissible absolute 1-center problem.
@article{ITVS_2020_2_a0,
author = {S. I. Fainshtein and A. S. Fainshtein and V. E. Torchinsky},
title = {Weighted admissible absolute 1-center problem},
journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
pages = {3--9},
publisher = {mathdoc},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ITVS_2020_2_a0/}
}
TY - JOUR AU - S. I. Fainshtein AU - A. S. Fainshtein AU - V. E. Torchinsky TI - Weighted admissible absolute 1-center problem JO - Informacionnye tehnologii i vyčislitelnye sistemy PY - 2020 SP - 3 EP - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ITVS_2020_2_a0/ LA - ru ID - ITVS_2020_2_a0 ER -
S. I. Fainshtein; A. S. Fainshtein; V. E. Torchinsky. Weighted admissible absolute 1-center problem. Informacionnye tehnologii i vyčislitelnye sistemy, no. 2 (2020), pp. 3-9. http://geodesic.mathdoc.fr/item/ITVS_2020_2_a0/