Effectiveness estimation of matrices compression in the procedures of randomized machine learning
Informacionnye tehnologii i vyčislitelnye sistemy, no. 1 (2018), pp. 3-7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of estimation effectiveness of the matrices compressions. That oriented to the procedures randomized machine learning. It is proposed to measure of effectiveness in the term of the Kullback-Leibler function.
Keywords: randomized machine learning, entropy, KL-distance.
@article{ITVS_2018_1_a0,
     author = {Yu. S. Popkov},
     title = {Effectiveness estimation of matrices compression in the procedures of randomized machine learning},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {3--7},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ITVS_2018_1_a0/}
}
TY  - JOUR
AU  - Yu. S. Popkov
TI  - Effectiveness estimation of matrices compression in the procedures of randomized machine learning
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2018
SP  - 3
EP  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ITVS_2018_1_a0/
LA  - ru
ID  - ITVS_2018_1_a0
ER  - 
%0 Journal Article
%A Yu. S. Popkov
%T Effectiveness estimation of matrices compression in the procedures of randomized machine learning
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2018
%P 3-7
%N 1
%U http://geodesic.mathdoc.fr/item/ITVS_2018_1_a0/
%G ru
%F ITVS_2018_1_a0
Yu. S. Popkov. Effectiveness estimation of matrices compression in the procedures of randomized machine learning. Informacionnye tehnologii i vyčislitelnye sistemy, no. 1 (2018), pp. 3-7. http://geodesic.mathdoc.fr/item/ITVS_2018_1_a0/