Effectiveness estimation of matrices compression in the procedures of randomized machine learning
Informacionnye tehnologii i vyčislitelnye sistemy, no. 1 (2018), pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru
The method of estimation effectiveness of the matrices compressions. That oriented to the procedures randomized machine learning. It is proposed to measure of effectiveness in the term of the Kullback-Leibler function.
Keywords:
randomized machine learning, entropy, KL-distance.
@article{ITVS_2018_1_a0,
author = {Yu. S. Popkov},
title = {Effectiveness estimation of matrices compression in the procedures of randomized machine learning},
journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
pages = {3--7},
year = {2018},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ITVS_2018_1_a0/}
}
TY - JOUR AU - Yu. S. Popkov TI - Effectiveness estimation of matrices compression in the procedures of randomized machine learning JO - Informacionnye tehnologii i vyčislitelnye sistemy PY - 2018 SP - 3 EP - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/ITVS_2018_1_a0/ LA - ru ID - ITVS_2018_1_a0 ER -
Yu. S. Popkov. Effectiveness estimation of matrices compression in the procedures of randomized machine learning. Informacionnye tehnologii i vyčislitelnye sistemy, no. 1 (2018), pp. 3-7. http://geodesic.mathdoc.fr/item/ITVS_2018_1_a0/