Data dimensionality reduction in simulation modeling
Informacionnye tehnologii i vyčislitelnye sistemy, no. 3 (2012), pp. 3-17
Voir la notice de l'article provenant de la source Math-Net.Ru
The intellectual data analysis problems motivated by predictive modeling technology are considered. Dimensionality reduction technique used for reducing a complexity of these problems has to satisfy to some specific requirements. These requirements are discussed and the new unconventional statements for dimensionality reduction problems are formulated in the paper.
Keywords:
dimensionality reduction, manifold learning, metamodeling, simulation modeling, computer networks.
@article{ITVS_2012_3_a0,
author = {Ju. G. Agalakov and A. V. Bernstein},
title = {Data dimensionality reduction in simulation modeling},
journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
pages = {3--17},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ITVS_2012_3_a0/}
}
Ju. G. Agalakov; A. V. Bernstein. Data dimensionality reduction in simulation modeling. Informacionnye tehnologii i vyčislitelnye sistemy, no. 3 (2012), pp. 3-17. http://geodesic.mathdoc.fr/item/ITVS_2012_3_a0/