Method of virtual prospect in computing technologies of mathematical modeling of “fuzzy” problems
Informacionnye tehnologii i vyčislitelnye sistemy, no. 3 (2011), pp. 66-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Substantive provisions and principles of a method virtual prospect in methodology of design and implementation computing technologies of mathematical modeling fuzzy problems are stated and formulated. A basis of a developed method make: the theory of virtual lattices, models of active memory and processes with local information interaction in the virtual information environment of modeling. Solutions of modeled problems are under construction in the form of complexes on cellular topology of quantum discrete spaces (lattice, counts).
Keywords: method of virtual prospect, technology modeling, model active memory, fuzzy problems, virtual information environment, computing.
@article{ITVS_2011_3_a8,
     author = {A. V. Myshev},
     title = {Method of virtual prospect in computing technologies of mathematical modeling of {\textquotedblleft}fuzzy{\textquotedblright} problems},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {66--78},
     year = {2011},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ITVS_2011_3_a8/}
}
TY  - JOUR
AU  - A. V. Myshev
TI  - Method of virtual prospect in computing technologies of mathematical modeling of “fuzzy” problems
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2011
SP  - 66
EP  - 78
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ITVS_2011_3_a8/
LA  - ru
ID  - ITVS_2011_3_a8
ER  - 
%0 Journal Article
%A A. V. Myshev
%T Method of virtual prospect in computing technologies of mathematical modeling of “fuzzy” problems
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2011
%P 66-78
%N 3
%U http://geodesic.mathdoc.fr/item/ITVS_2011_3_a8/
%G ru
%F ITVS_2011_3_a8
A. V. Myshev. Method of virtual prospect in computing technologies of mathematical modeling of “fuzzy” problems. Informacionnye tehnologii i vyčislitelnye sistemy, no. 3 (2011), pp. 66-78. http://geodesic.mathdoc.fr/item/ITVS_2011_3_a8/