An exercise on Fibonacci representations
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 6, pp. 491-498

Voir la notice de l'article provenant de la source Numdam

We give a partial answer to a question of Carlitz asking for a closed formula for the number of distinct representations of an integer in the Fibonacci base.

Classification : 68R15, 68R05
@article{ITA_2001__35_6_491_0,
     author = {Berstel, Jean},
     title = {An exercise on {Fibonacci} representations},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {491--498},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {6},
     year = {2001},
     mrnumber = {1922290},
     zbl = {1005.68119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ITA_2001__35_6_491_0/}
}
TY  - JOUR
AU  - Berstel, Jean
TI  - An exercise on Fibonacci representations
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2001
SP  - 491
EP  - 498
VL  - 35
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/ITA_2001__35_6_491_0/
LA  - en
ID  - ITA_2001__35_6_491_0
ER  - 
%0 Journal Article
%A Berstel, Jean
%T An exercise on Fibonacci representations
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2001
%P 491-498
%V 35
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/ITA_2001__35_6_491_0/
%G en
%F ITA_2001__35_6_491_0
Berstel, Jean. An exercise on Fibonacci representations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 6, pp. 491-498. http://geodesic.mathdoc.fr/item/ITA_2001__35_6_491_0/