Linear size test sets for certain commutative languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 5, pp. 453-475
Cet article a éte moissonné depuis la source Numdam
We prove that for each positive integer the finite commutative language possesses a test set of size at most Moreover, it is shown that each test set for has at least elements. The result is then generalized to commutative languages containing a word such that (i) and (ii) each symbol occurs at least twice in if it occurs at least twice in some word of : each such possesses a test set of size , where . The considerations rest on the analysis of some basic types of word equations.
@article{ITA_2001__35_5_453_0,
author = {Holub, \v{S}t\v{e}p\'an and Kortelainen, Juha},
title = {Linear size test sets for certain commutative languages},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {453--475},
year = {2001},
publisher = {EDP-Sciences},
volume = {35},
number = {5},
mrnumber = {1908866},
zbl = {1010.68103},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ITA_2001__35_5_453_0/}
}
TY - JOUR AU - Holub, Štěpán AU - Kortelainen, Juha TI - Linear size test sets for certain commutative languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 453 EP - 475 VL - 35 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/ITA_2001__35_5_453_0/ LA - en ID - ITA_2001__35_5_453_0 ER -
%0 Journal Article %A Holub, Štěpán %A Kortelainen, Juha %T Linear size test sets for certain commutative languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 453-475 %V 35 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/ITA_2001__35_5_453_0/ %G en %F ITA_2001__35_5_453_0
Holub, Štěpán; Kortelainen, Juha. Linear size test sets for certain commutative languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 5, pp. 453-475. http://geodesic.mathdoc.fr/item/ITA_2001__35_5_453_0/