On the hardness of approximating some NP-optimization problems related to minimum linear ordering problem
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 3, pp. 287-309

Voir la notice de l'article provenant de la source Numdam

We study hardness of approximating several minimaximal and maximinimal NP-optimization problems related to the minimum linear ordering problem (MINLOP). MINLOP is to find a minimum weight acyclic tournament in a given arc-weighted complete digraph. MINLOP is APX-hard but its unweighted version is polynomial time solvable. We prove that MIN-MAX-SUBDAG problem, which is a generalization of MINLOP and requires to find a minimum cardinality maximal acyclic subdigraph of a given digraph, is, however, APX-hard. Using results of Håstad concerning hardness of approximating independence number of a graph we then prove similar results concerning MAX-MIN-VC (respectively, MAX-MIN-FVS) which requires to find a maximum cardinality minimal vertex cover in a given graph (respectively, a maximum cardinality minimal feedback vertex set in a given digraph). We also prove APX-hardness of these and several related problems on various degree bounded graphs and digraphs.

Classification : 68Q17, 68R01, 68W25
Keywords: NP-optimization problems, minimaximal and maximinimal NP-optimization problems, approximation algorithms, hardness of approximation, APX-hardness, AP-reduction, L-reduction, S-reduction
@article{ITA_2001__35_3_287_0,
     author = {Mishra, Sounaka and Sikdar, Kripasindhu},
     title = {On the hardness of approximating some {NP-optimization} problems related to minimum linear ordering problem},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {287--309},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {3},
     year = {2001},
     mrnumber = {1869219},
     zbl = {1014.68063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ITA_2001__35_3_287_0/}
}
TY  - JOUR
AU  - Mishra, Sounaka
AU  - Sikdar, Kripasindhu
TI  - On the hardness of approximating some NP-optimization problems related to minimum linear ordering problem
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2001
SP  - 287
EP  - 309
VL  - 35
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/ITA_2001__35_3_287_0/
LA  - en
ID  - ITA_2001__35_3_287_0
ER  - 
%0 Journal Article
%A Mishra, Sounaka
%A Sikdar, Kripasindhu
%T On the hardness of approximating some NP-optimization problems related to minimum linear ordering problem
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2001
%P 287-309
%V 35
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/ITA_2001__35_3_287_0/
%G en
%F ITA_2001__35_3_287_0
Mishra, Sounaka; Sikdar, Kripasindhu. On the hardness of approximating some NP-optimization problems related to minimum linear ordering problem. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 3, pp. 287-309. http://geodesic.mathdoc.fr/item/ITA_2001__35_3_287_0/