Voir la notice de l'article provenant de la source Numdam
We investigate the number of iterations needed by an addition algorithm due to Burks et al. if the input is random. Several authors have obtained results on the average case behaviour, mainly using analytic techniques based on generating functions. Here we take a more probabilistic view which leads to a limit theorem for the distribution of the random number of steps required by the algorithm and also helps to explain the limiting logarithmic periodicity as a simple discretization phenomenon.
@article{ITA_2001__35_2_187_0, author = {Gr\"ubel, Rudolf and Reimers, Anke}, title = {On the number of iterations required by {Von} {Neumann} addition}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {187--206}, publisher = {EDP-Sciences}, volume = {35}, number = {2}, year = {2001}, mrnumber = {1862462}, zbl = {1053.68051}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ITA_2001__35_2_187_0/} }
TY - JOUR AU - Grübel, Rudolf AU - Reimers, Anke TI - On the number of iterations required by Von Neumann addition JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 187 EP - 206 VL - 35 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/ITA_2001__35_2_187_0/ LA - en ID - ITA_2001__35_2_187_0 ER -
%0 Journal Article %A Grübel, Rudolf %A Reimers, Anke %T On the number of iterations required by Von Neumann addition %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 187-206 %V 35 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/ITA_2001__35_2_187_0/ %G en %F ITA_2001__35_2_187_0
Grübel, Rudolf; Reimers, Anke. On the number of iterations required by Von Neumann addition. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 2, pp. 187-206. http://geodesic.mathdoc.fr/item/ITA_2001__35_2_187_0/