A new class of balanced search trees : half-balanced binary search tress
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 16 (1982) no. 1, pp. 51-71.

Voir la notice de l'article provenant de la source Numdam

@article{ITA_1982__16_1_51_0,
     author = {Olivi\'e, H. J.},
     title = {A new class of balanced search trees : half-balanced binary search tress},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {51--71},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {1},
     year = {1982},
     mrnumber = {677655},
     zbl = {0489.68056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ITA_1982__16_1_51_0/}
}
TY  - JOUR
AU  - Olivié, H. J.
TI  - A new class of balanced search trees : half-balanced binary search tress
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1982
SP  - 51
EP  - 71
VL  - 16
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/ITA_1982__16_1_51_0/
LA  - en
ID  - ITA_1982__16_1_51_0
ER  - 
%0 Journal Article
%A Olivié, H. J.
%T A new class of balanced search trees : half-balanced binary search tress
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1982
%P 51-71
%V 16
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/ITA_1982__16_1_51_0/
%G en
%F ITA_1982__16_1_51_0
Olivié, H. J. A new class of balanced search trees : half-balanced binary search tress. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 16 (1982) no. 1, pp. 51-71. http://geodesic.mathdoc.fr/item/ITA_1982__16_1_51_0/

1. G. M. Adelson-Velskii and E. M. Landis, An Algorithm for the Organization of Information, Dokl. Akad. Nauk S.S.S.R., Vol. 146, 1962, pp. 263-266 (Russian). English translation in Soviet Math. Dokl., Vol. 3, 1962, pp. 1259-1263. | MR

2. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974. | Zbl | MR

3. R. Bayer, Symmetric Binary B-trees Data Structure and Maintenance Algorithms, Acta Informatica, Vol. 1, 1972, pp. 290-306. | Zbl | MR

4. N. Blum and K. Mehlhorm, Mittlere Anzahl von Rebalancierungoperationen in Gewichtsbalancierten Bäumen, 4th GI Conference on Theoretical Computer Science, Aachen 1979, Lecture Notes in Computer Science, Vol. 67, pp. 67-78, Springer, Berlin, Heidelberg, New York. | Zbl | MR

5. P. L. Karlton, S. H. Fuller, R. E. Scroggs and E. B. Kaehler, Performance of Height-Balanced Trees, Com. A.C.M. 19, Vol. 1, 1976, pp. 23-28. | Zbl

6. D. E. Knuth, The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley, Reading, Mass., 1968, 1973. | MR

7. D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley, Reading, Mass., 1973. | Zbl | MR

8. J. Nievergelt and E. M. Reingold, Binary Search Trees of Bounded Balance, S.I.A.M. J. Comput., Vol. 2, 1973, pp. 33-43. | Zbl | MR

9. H. J. Olivié, A New Class of Balanced Search Trees: Half-Balanced Binary Searc Trees, Technical Report 80-02, IHAM, Paardenmarkt 94, B-2000 Antwerp, Belgium, 1980.

10. H. J. Olivié, A Study of Balanced Binary Trees and Balanced One-Two Trees, Ph. D. Thesis, Dept. of Mathematics, U.I.A., University of Antwerp, Belgium, 1980.