Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_4_a9, author = {A. V. Krys'ko and A. N. Krechin and M. V. Zhigalov and V. A. Krys'ko}, title = {Nonlinear statics and dynamics of porous functional-gradient nanobeam taking into account transverse shifts}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {587--597}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a9/} }
TY - JOUR AU - A. V. Krys'ko AU - A. N. Krechin AU - M. V. Zhigalov AU - V. A. Krys'ko TI - Nonlinear statics and dynamics of porous functional-gradient nanobeam taking into account transverse shifts JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 587 EP - 597 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a9/ LA - ru ID - ISU_2024_24_4_a9 ER -
%0 Journal Article %A A. V. Krys'ko %A A. N. Krechin %A M. V. Zhigalov %A V. A. Krys'ko %T Nonlinear statics and dynamics of porous functional-gradient nanobeam taking into account transverse shifts %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 587-597 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a9/ %G ru %F ISU_2024_24_4_a9
A. V. Krys'ko; A. N. Krechin; M. V. Zhigalov; V. A. Krys'ko. Nonlinear statics and dynamics of porous functional-gradient nanobeam taking into account transverse shifts. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 587-597. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a9/
[1] Kumar R., Lal A., Singh B. N., Singh J., “Non-linear analysis of porous elastically supported FGM plate under various loading”, Composite Structures, 233 (2020), 111721 | DOI
[2] Shafiei N., Mirjavadi S. S., Afshari B. M., Rabby S., Kazemi M., “Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams”, Computer Methods Applied Mechanics and Engineering, 322 (2017), 615–632 | DOI
[3] Shafiei N., Mirjavadi S. S., Afshari B. M., Rabby S., Hamouda A. M. S., “Nonlinear thermal buckling of axially functionally graded micro and nanobeams”, Composite Structures, 168 (2017), 428–439 | DOI
[4] Changho Oh, Stovall C. B., Dhaouadi W., Carpick R. W., de Boer M. P., “The strong effect on MEMS switch reliability of film deposition conditions and electrode geometry”, Microelectronics Reliability, 98 (2019), 131–143 | DOI
[5] Fan F., Xu Y., Sahmani S., Safaei B., “Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach”, Computer Methods in Applied Mechanics and Engineering, 372 (2020), 113400 | DOI
[6] Ebrahimi F., Barati M. R., “Small-scale effects on hygro-thermo-mechanical vibration of temperaturedependent nonhomogeneous nanoscale beams”, Mechanics of Advanced Materials and Structures, 24:11 (2017), 924–936 | DOI
[7] Jouneghani F. Z., Dimitri R., Tornabene F., “Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings”, Composites Part B: Engineering, 152 (2018), 71–78 | DOI
[8] Ebrahimi F., Dabbagh A., “Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme”, The European Physical Journal Plus, 134 (2019), 157 | DOI
[9] Messai A., Fortas L., Merzouki T., Houari M. S. A., “Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory”, Structural Engineering and Mechanics, 81:4 (2022), 461–479 | DOI
[10] Xu X., Karami B., Shahsavari D., “Time-dependent behavior of porous curved nanobeam”, International Journal of Engineering Science, 160 (2021), 103455 | DOI
[11] Yang F., Chong A. C. M., Lam D. C. C., Tong P., “Couple stress based strain gradient theory for elasticity”, International Journal of Solids and Structures, 39 (2002), 2731–2743 | DOI
[12] Awrejcewicz J., Krysko A. V., Smirnov A., Kalutsky L. A., Zhigalov M. V., Krysko V. A., “Mathematical modeling and methods of analysis of generalized functionally gradient porous nanobeams and nanoplates subjected to temperature field”, Meccanica, 57 (2022), 1591–1616 | DOI
[13] Miller R. E., Shenoy V. B., “Size-dependent elastic properties of nanosized structural elements”, Nanotechnology, 11:3 (2000), 139–147 | DOI
[14] Krysko V. A., Awrejcewicz J., Komarov S. A., “Nonlinear deformations of spherical panels subjected to transversal load action”, Computer Methods Applied Mechanics and Engineering, 194 (2005), 3108–3126 | DOI
[15] Gulick D., Encounters with chaos, McGraw-Hill College, New York, 1992, 224 pp.
[16] Awrejcewicz J., Krysko A. V., Erofeev N. P., Dobriyan V., Barulina M. A., Krysko V. A., “Quantifying chaos by various computational methods. Part 1: Simple systems”, Entropy, 20:3 (2018), 175 | DOI