On $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups of finite groups
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 526-535

Voir la notice de l'article provenant de la source Math-Net.Ru

Only finite groups are considered. $\frak F$-projectors and $\frak F$-covering subgroups, where $\frak F$ is a certain class of groups, were introduced into consideration by W. Gaschutz as a natural generalization of Sylow and Hall subgroups in finite groups. Developing Gaschutz's idea, V. A. Vedernikov and M. M. Sorokina defined $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups, where $\omega$ is a non-empty set of primes, and established their main characteristics. The purpose of this work is to study the properties of $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups, establishing their relation with other subgroups in groups. The following tasks are solved: for a non-empty $\omega$-primitively closed homomorph $\frak F$ and a given set $\pi$ of primes, the conditions under which an $\frak F^{\omega}$-projector of a group coincides with its $\pi$-Hall subgroup are established; for a given formation $\frak F$, a relation between $\frak F^{\omega}$-covering subgroups of a group $G=A\rtimes B$ and $\frak F^{\omega}$-covering subgroups of the group $B$ is obtained. In the paper classical methods of the theory of finite groups, as well as methods of the theory of classes of groups are used.
@article{ISU_2024_24_4_a4,
     author = {M. M. Sorokina and D. G. Novikova},
     title = {On $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups of finite groups},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {526--535},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a4/}
}
TY  - JOUR
AU  - M. M. Sorokina
AU  - D. G. Novikova
TI  - On $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups of finite groups
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 526
EP  - 535
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a4/
LA  - ru
ID  - ISU_2024_24_4_a4
ER  - 
%0 Journal Article
%A M. M. Sorokina
%A D. G. Novikova
%T On $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups of finite groups
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 526-535
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a4/
%G ru
%F ISU_2024_24_4_a4
M. M. Sorokina; D. G. Novikova. On $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups of finite groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 526-535. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a4/