Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_4_a2, author = {H. S. Petrosyan and S. M. Andriyan and Kh. A. Khachatryan}, title = {Questions of existence and uniqueness of the solution of one class of an infinite system of nonlinear two-dimensional equations}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {498--511}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a2/} }
TY - JOUR AU - H. S. Petrosyan AU - S. M. Andriyan AU - Kh. A. Khachatryan TI - Questions of existence and uniqueness of the solution of one class of an infinite system of nonlinear two-dimensional equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 498 EP - 511 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a2/ LA - ru ID - ISU_2024_24_4_a2 ER -
%0 Journal Article %A H. S. Petrosyan %A S. M. Andriyan %A Kh. A. Khachatryan %T Questions of existence and uniqueness of the solution of one class of an infinite system of nonlinear two-dimensional equations %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 498-511 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a2/ %G ru %F ISU_2024_24_4_a2
H. S. Petrosyan; S. M. Andriyan; Kh. A. Khachatryan. Questions of existence and uniqueness of the solution of one class of an infinite system of nonlinear two-dimensional equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 498-511. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a2/
[1] Vladimirov V. S., Volovich Ya. I., “Nonlinear dynamics equation in $p$-adic string theory”, Theoretical and Mathematical Physics, 138:3 (2004), 297–309 | DOI | DOI
[2] Vladimirov V. S., “Nonlinear equations for $p$-adic open, closed, and open-closed strings”, Theoretical and Mathematical Physics, 149:3 (2006), 1604–1616 | DOI | DOI
[3] Zhukovskaya L. V., “Iterative method for solving nonlinear integral equations describing rolling solutions in string theory”, Theoretical and Mathematical Physics, 146:3 (2006), 335–342 | DOI | DOI
[4] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, Journal of Mathematical Biology, 6:2 (1978), 109–130 | DOI
[5] Danchenko V. I., Rubay R. V., “On integral equations of stationary distributions for biological systems”, Journal of Mathematical Sciences, 171:1 (2010), 34–45 | DOI
[6] Cercignani C., Theory and application of the Boltzmann equation, Scottish Academic Press, Edinburgh, 1975, 415 pp.
[7] Kogan M., Rarefied Gas Dynamics, Springer, New York, 1969, 515 pp. | DOI
[8] Villani C., “Cercignani's conjecture is sometimes true and always almost true”, Communications in Mathematical Physics, 234:3 (2003), 455–490 | DOI
[9] Latyshev A. V., Yushkanov A. A., “An analytical description of the skin effect in a metal by using a two-parameter kinetic equation”, Computational Mathematics and Mathematical Physics, 44:10 (2004), 1773–1783
[10] Barichello L. B., Siewert C. E., “The temperature-jump problem in rarefied gas dynamics”, European Journal of Applied Mathematics, 11:4 (2000), 353–534 | DOI
[11] Moeller N., Schnabl M., “Tachyon condensation in open-closed $p$-adic string theory”, Journal of High Energy Physics, 2004:1 (2004), 011 | DOI
[12] Aref'eva I. Ya., Dragovic B. G.,Volovich I. V., “$p$-adic superstrings”, Physics Letters B, 214:3 (1988), 339–349 | DOI
[13] Diekmann O., Kaper H. G., “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Analysis: Theory, Methods and Applications, 2:6 (1978), 721–737 | DOI
[14] Volovich I. V., “$p$-adic string”, Classical Quantum Gravity, 4:4 (1987), L83–L87 https://iopscience.iop.org/article/10.1088/0264-9381/4/4/003
[15] Khachatryan A. Kh., Khachatryan Kh. A., “On solvability of one infinite system of nonlinear functional equations in the theory of epidemics”, Eurasian Mathematical Journal, 11:2 (2020), 52–64 | DOI
[16] Khachatryan Kh. A., “Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity”, Izvestiya: Mathematics, 84:4 (2020), 807–815 | DOI | DOI
[17] Atkinson C., Reuter G. E. H., “Deterministic epidemic waves”, Mathematical Proceeding of the Cambridge Philosophical Society, 80:2 (1976), 315–330 | DOI
[18] Vladimirov V. S., “Nonexistence of solutions of the $p$-adic strings”, Theoretical and Mathematical Physics, 174:2 (2013), 178–185 | DOI | DOI
[19] Avetisyan M. O., Khachatryan Kh. A., “On the qualitative properties of a solution for a system of infinite nonlinear algebraic equations”, Vladikavkaz Mathematical Journal, 24:4, 5–18 (in Russian) | DOI
[20] Khachatryan Kh. A., Broyan M. F., “One-parameter family of positive solutions for a class of nonlinear infinite algebraic systems with Teoplitz – Hankel type matrices”, Journal of Contemporary Mathematical Analysis, 48:5 (2013), 209–220 | DOI
[21] Khachatryan K. A., Andriyan S. M., “On the solvability of a class of discrete matrix equations with cubic nonlinearity”, Ukrainian Mathematical Journal, 71 (2020), 1910–1928 | DOI
[22] Arabadzhyan L. G., “An infinite algebraic system in the irregular case”, Mathematical Notes, 89:1 (2011), 3–10 | DOI | DOI
[23] Arabadzhyan L. G., Engibaryan N. B., “Convolution equations and nonlinear functional equations”, Journal of Soviet Mathematics, 36:6 (1987), 745–791 | DOI
[24] Suetin P. K., “Solution of discrete convolution equations in connection with some problems of radio engineering”, Russian Mathematical Surveys, 44:5 (1989), 119–143 | DOI
[25] Karapetjanc N. K., Samko S. G., “The discrete Wiener – Hopf operators with oscillating coefficients”, Doklady Akademii Nauk SSSR, 200:1 (1971), 17–20 (in Russian) | MR