Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_3_a8, author = {I. A. Pankratov}, title = {On renormalization of the approximate solution of the orbital coordinate system equations of orientation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {415--422}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a8/} }
TY - JOUR AU - I. A. Pankratov TI - On renormalization of the approximate solution of the orbital coordinate system equations of orientation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 415 EP - 422 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a8/ LA - ru ID - ISU_2024_24_3_a8 ER -
%0 Journal Article %A I. A. Pankratov %T On renormalization of the approximate solution of the orbital coordinate system equations of orientation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 415-422 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a8/ %G ru %F ISU_2024_24_3_a8
I. A. Pankratov. On renormalization of the approximate solution of the orbital coordinate system equations of orientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 415-422. http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a8/
[1] V. K. Abalakin, E. P. Aksenov, E. A. Grebennikov, V. G. Demin, Yu. A. Ryabov, Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike, Nauka, M., 1976, 864 pp.
[2] Duboshin G. N., Nebesnaya mekhanika. Osnovnye zadachi i metody, Nauka, M., 1968, 799 pp.
[3] V. A. Chobotov (ed.), Orbital Mechanics, AIAA Education Series, AIAA, Reston, 2002, 455 pp. | DOI
[4] S. A. Ishkov, V. A. Romanenko, “Formirovanie i korrektsiya vysokoellipticheskoi orbity sputnika Zemli s dvigatelem maloi tyagi”, Kosmicheskie issledovaniya, 35:3 (1997), 287–296
[5] V. V. Salmin, V. O. Sokolov, “Priblizhennyi raschet manevrov formirovaniya orbity sputnika Zemli s dvigatelem maloi tyagi”, Kosmicheskie issledovaniya, 29:6 (1991), 872–888
[6] V. N. Branets, I. P. Shmyglevskii, Primenenie kvaternionov v zadachakh orientatsii tverdogo tela, Nauka, M., 1973, 320 pp. | MR
[7] V. I. Zubov, Analiticheskaya dinamika giroskopicheskikh sistem, Sudostroenie, L., 1970, 317 pp.
[8] A. V. Molodenkov, “K resheniyu zadachi Darbu”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2007, no. 2, 3–13
[9] I. A. Pankratov, “Approksimatsiya uravnenii orientatsii orbitalnoi sistemy koordinat metodom vzveshennykh nevyazok”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 21:2 (2021), 194–201 | DOI | MR
[10] I. A. Pankratov, “Ob odnom podkhode k opredeleniyu orientatsii orbity kosmicheskogo apparata”, International Journal of Open Information Technologies, 9:10 (2021), 47–51 | MR
[11] Yu. N. Chelnokov, “Primenenie kvaternionov v teorii orbitalnogo dvizheniya iskusstvennogo sputnika. I”, Kosmicheskie issledovaniya, 30:6 (1992), 759–770
[12] I. A. Pankratov, “Genetic algorithm of energy consumption optimization for reorientation of the spacecraft orbital plane”, Mechatronics, Automation, Control, 23:5 (2022), 256–262 | DOI
[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 393 pp. | MR
[14] Yu. N. Chelnokov, “Optimalnaya pereorientatsiya orbity kosmicheskogo apparata posredstvom reaktivnoi tyagi, ortogonalnoi ploskosti orbity”, Prikladnaya matematika i mekhanika, 76:6 (2012), 895–912 | MR | Zbl
[15] I. A. Pankratov, “Analiticheskoe reshenie uravnenii orientatsii okolokrugovoi orbity kos micheskogo apparata”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matema tika. Mekhanika. Informatika, 15:1 (2015), 97–105 | DOI | Zbl
[16] Naife A., Vvedenie v metody vozmuschenii, Mir, M., 1984, 535 pp.
[17] Naife A., Metody vozmuschenii, Mir, M., 1976, 456 pp.
[18] C. Fuhrer, J. E. Solem, O. Verdier, Scientific Computing with Python 3, Packt Publishing, Birmingham–Mumbai, 2016, 332 pp.
[19] A. Meurer, C. P. Smith, Paprocki M. et al, “SymPy: Symbolic computing in Python”, PeerJ Computer Science (data obrascheniya: 10.01.2023) https://peerj.com/articles/cs-103.pdf | DOI