Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_2_a7, author = {E. Yu. Krylova}, title = {Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {231--244}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a7/} }
TY - JOUR AU - E. Yu. Krylova TI - Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 231 EP - 244 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a7/ LA - ru ID - ISU_2024_24_2_a7 ER -
%0 Journal Article %A E. Yu. Krylova %T Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 231-244 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a7/ %G ru %F ISU_2024_24_2_a7
E. Yu. Krylova. Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 231-244. http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a7/
[1] Peddieson J., Buchanan R., McNitt R. P., “Application of nonlocal continuum models to nanotechnology”, International Journal of Engineering Science, 41 (2003), 595–609 | DOI
[2] Bazehhour B. G., Mousavi S. M., Farshidianfar A., “Free vibration of high-speed rotating Timoshenko shaft with various boundary conditions: effect of centrifugally induced axial force”, Archive of Applied Mechanics, 84:12 (2014), 1691–1700 | DOI
[3] Karlicic D., Kozic P., Pavlovic R., “Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations”, Journal of Theoretical and Applied Mechanics, 53:1 (2015), 217–233 | DOI | MR
[4] Ivanova E. A., Morozov N. F., Semenov B. N., Firsova A. D., “Determination of elastic moduli of nanostructures: Theoretical estimates and experimental techniques”, Mechanics of Solids, 40:4 (2005), 60–68
[5] Daneshmand F., Rafiei M., Mohebpour S. R., Heshmati M., “Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory”, Applied Mathematical Modelling, 37:16–17 (2013), 7983–8003 | DOI | MR | Zbl
[6] Sarkisjan S. O., Farmanyan A. Zh., “Mathematical model of micropolar anisotropic (orthotropic) elastic thin shells”, PNRPU Mechanics Bulletin, 2011, no. 3, 128–145 (in Russian)
[7] Taliercio A., Veber D., “Torsion of elastic anisotropic micropolar cylindrical bars”, European Journal of Mechanics – A/Solids, 55 (2016), 45–56 | DOI | MR | Zbl
[8] X. Zhou, L. Wang, “Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory”, Micro and Nano Letters, 7:7 (2012), 679–684 | DOI | MR
[9] Safarpour H., Mohammadi K., Ghadiri M., “Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: A numerical solution”, Journal of the Mechanical Behavior of Materials, 26:1–2 (2017), 9–24 | DOI
[10] Sahmani S., Ansari R., Gholami R., Darvizeh A., “Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory”, Composites: Part B, 51 (2013), 44–53 | DOI | MR
[11] Krylova E. Yu., Papkova I. V., Sinichkina A. O., Yakovleva T. B., Krysko-yang V. A., “Mathematical model of flexible dimension-dependent mesh plates”, Journal of Physics: Conference Series, 1210 (2019), 012073 | DOI
[12] Scheible D. V., Erbe A., Blick R. H., “Evidence of a nanomechanical resonator being driven into chaotic response via the Ruelle – Takens route”, Applied Physics Letters, 81 (2002), 1884–1886 | DOI
[13] Eremeyev V. A., “A nonlinear model of a mesh shell”, Mechanics of Solids, 53:4 (2018), 464–469 | DOI | DOI
[14] Krylova E. Yu., Papkova I. V., Saltykova O. A., Krysko V. A., “Features of complex vibrations of flexible micropolar mesh panels”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 21:1 (2021), 48–59 (in Russian) | DOI | MR
[15] Sedighi H. M., Malikan M., Valipour A., Zur K. K., “Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method”, Journal of Computational Design and Engineering, 7:5 (2020), 591–602 | DOI
[16] Sedighi H. M., “Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid”, Acta Mechanica Sinica/Lixue Xuebao, 36:2 (2020), 381–396 | DOI | MR
[17] Panin V. E., “Foundations of physical mesomechanics”, Physical Mesomechanics, 1:1 (1998), 5–22 (in Russian)
[18] Glukhova O. E., Kirillova I. V., Kossovich E. L., Fadeev A. A., “Mechanical properties study for graphene sheets of various size”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 12:4 (2012), 63–66 (in Russian) | DOI
[19] Imran M., Hussain F., Khalil R. M. A., Sattar M. A, Mehboob H., Javid M. A., Rana A. M., Ahmad S. A., “Anisotropic thermal and mechanical characteristics of graphene: A molecular dynamics study”, Journal of Experimental and Theoretical Physics, 128:2 (2019), 259–267 | DOI | DOI
[20] Sargsyan S. H., Farmanyan A. J., “Thermoelasticity of micropolar orthotropic thin shells”, PNRPU Mechanics Bulletin, 2013, no. 3, 222–237 (in Russian) | DOI
[21] Sheremetiev M. P., Pelekh B. L., “To the construction of a refined theory of plates”, Engineering Journal, 3:3 (1964), 34–41 (in Russian)
[22] Kármán T. V., “Festigkeitsprobleme im Maschinenbau”, Mechanik, eds. F. Klein, C. Müller, Vieweg+Teubner Verlag, Wiesbaden, 1907, 311–385 | DOI
[23] Erofeev V. I., Wave Processes in Solids with Microstructure, Moscow University Press, M., 1999, 328 pp. (in Russian)
[24] Volmir A. C., Nonlinear Dynamics of Plates and Shells, Nauka, M., 1972, 432 pp. (in Russian) | MR
[25] Hamilton W., Report of the Fourth Meeting, British Association for the Advancement of Science, London, 1835, 513–518
[26] Ostrogradsku M., L'Impr. de l'Académie impériale des sciences, Mémoires de l'Académie impériale des sciences de St.-Pétersbourg, 8, no. 3, St.-Pétersbourg, 1850, 33–48
[27] Sun C. T., Zhang Y., “Size-dependent elastic moduli of platelike nanomaterials”, Journal of Applied Physics, 93:2 (2003), 1212–1218 | DOI
[28] Pshenichnov G. I., Theory of Thin Elastic Mesh Shells and Plates, Nauka, M., 1982, 352 pp. (in Russian)
[29] Krysko V. A., Awrejcewicz J., Komarov S. A., “Nonlinear deformations of spherical panels subjected to transversal load action”, Computer Methods in Applied Mechanics and Engineering, 194:27–29 (2005), 3108–3126 | DOI | MR | Zbl
[30] Schelling P. K., Keblinski P., “Thermal expansion of carbon structures”, Physical Review B, 68:3 (2003), 035425 | DOI