Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 231-244

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work the mathematical model of micropolar meshed cylindrical shells oscillations under the action of the vibrational and temperature effects is constructed. The shell material is an elastic orthotropic homogeneous Cosserat pseudocontinuum with constrained rotation of particles. The Duhamel – Neumann’s law was adopted. The mesh structure is taken into account according to the model of G. I. Pshenichnov, geometric nonlinearity according to Theodor von Karman theory. The equations of motion, boundary and initial conditions are obtained from the Ostrogradsky – Hamilton variational principle based on the Tymoshenko kinematic model. The constructed a mathematical model will be useful, among other things, in the study of the behavior of carbon nanotubes under various operating conditions.
@article{ISU_2024_24_2_a7,
     author = {E. Yu. Krylova},
     title = {Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {231--244},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a7/}
}
TY  - JOUR
AU  - E. Yu. Krylova
TI  - Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 231
EP  - 244
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a7/
LA  - ru
ID  - ISU_2024_24_2_a7
ER  - 
%0 Journal Article
%A E. Yu. Krylova
%T Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 231-244
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a7/
%G ru
%F ISU_2024_24_2_a7
E. Yu. Krylova. Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 231-244. http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a7/