Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_2_a5, author = {A. O. Vatulyan and V. O. Yurov}, title = {On a new approach to identifying inhomogeneous mechanical properties of~elastic~bodies}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {209--221}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a5/} }
TY - JOUR AU - A. O. Vatulyan AU - V. O. Yurov TI - On a new approach to identifying inhomogeneous mechanical properties of~elastic~bodies JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 209 EP - 221 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a5/ LA - ru ID - ISU_2024_24_2_a5 ER -
%0 Journal Article %A A. O. Vatulyan %A V. O. Yurov %T On a new approach to identifying inhomogeneous mechanical properties of~elastic~bodies %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 209-221 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a5/ %G ru %F ISU_2024_24_2_a5
A. O. Vatulyan; V. O. Yurov. On a new approach to identifying inhomogeneous mechanical properties of~elastic~bodies. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 209-221. http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a5/
[1] Tikhonov A. N., Arsenin V. Ya., Methods for Solving Ill-posed Problems, Nauka, M., 1986, 288 pp. (in Russian)
[2] Levitan B. M., Inverse Sturm – Liouville Problems and Their Applications, Nauka, M., 1984, 240 pp. (in Russian) | MR
[3] Kravchenko V. V., Direct and Inverse Sturm – Liouville Problems. A Method of Solution, Frontiers in Mathematics, Birkhäuser, Cham, 2020, 154 pp. | DOI | MR
[4] Romanov V. G., Inverse Problems of Mathematical Physics, Nauka, M., 1984, 262 pp. (in Russian) | MR
[5] Yakhno V. G., Inverse Coefficient Problems for Differential Elasticity Equations, Nauka, Novosibirsk, 1990, 304 pp. (in Russian) | MR
[6] Bui H. D., Inverse Problems in the Mechanic of Materials: An Introduction, CRC Press, Boca Raton, FL, 1994, 224 pp.
[7] Isakov V., Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, Springer, Cham, 2017, 406 pp. | DOI | MR | Zbl
[8] Bonnet M., Constantinescu A., “Inverse problems in elasticity”, Inverse Problem, 21 (2005), 1–50 | DOI | MR
[9] Yurko V. A., Introduction to the Theory of Inverse Spectral Problems, Fizmatlit, M., 2007, 384 pp. (in Russian)
[10] Bal G., Introduction to Inverse Problems, Columbia University, New York, 2012, 205 pp.
[11] Neto F. D. M., Neto A. J. S., An Introduction to Inverse Problems with Applications, Springer, Berlin, 2013, 255 pp. | MR | Zbl
[12] Kabanikhin S. I., Inverse and Ill-posed Problems, Publ. House SB RAS, Novosibirsk, 2018, 512 pp. (in Russian)
[13] Tikhonov A. N., Goncharskiy A. V., Stepanov V. V., Yagola A. G., Numerical Methods for Solving Ill-posed Problems, Nauka, M., 1990, 230 pp. (in Russian) | MR
[14] Samarskiy A. A., Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Editorial URSS, M., 2004, 480 pp. (in Russian)
[15] Vatulyan A. O., Coefficient Inverse Problems of Mechanics, Fizmatlit, M., 2019, 272 pp. (in Russian)
[16] Vatulyan A. O., Nesterov S. A., Coefficient Inverse Problems of Thermomechanics, Southern Federal University Publ, Rostov-on-Don–Taganrog, 2022, 176 pp. (in Russian)
[17] Bondarenko A. N., Bugueva T. V., Dedok V. A., “Inverse problems of anomalous diffusion theory: An artificial neural network approach”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 311–321 | DOI | DOI | MR | Zbl
[18] Bogachev I. V., Vatulyan A. O., Dudarev V. V., “On the method of property identification of multilayer soft biological tissues”, Russian Journal of Biomechanics, 17:3 (2013), 37–48 (in Russian)
[19] Sinkus R., Lorenzen J., Schrader D., Lorenzen M., Dargatz M., Holz D., “High-resolution tensor MR elastography for breast tumour detection”, Physics in Medicine Biology, 45:6 (2000), 1649–1664 | DOI
[20] Manduca A., Oliphant T. E., Dresner M. A., Mahowald J. L., Kruse S. A., Amromin E., Felmlee J. P., Greenleaf J. F., Ehman R. L., “Magnetic resonance elastography: Non-invasive mapping of tissue elasticity”, Medical Image Analysis, 5:4 (2001), 237–254 | DOI
[21] Sarvazyan A. P., “Low-frequency acoustic characteristics of biological tissues”, Polymer Mechanics, 1975, no. 4, 691–695 (in Russian)
[22] Sarvazyan A., Goukassian D., Maevsky G., “Elasticity imaging as a new modality of medical imaging for cancer detection”, Proceedings of an International Workshop on Interaction of Ultrasound with Biological Media (Valenciennes, France, 1994), 69–81
[23] Sarvazyan A. P., Rudenko O. V., Swanson S. D., Fowlkes J. B., Emelianov S. Y., “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics”, Ultrasound in Medicine Biology, 24:9 (1998), 1419–1435 | DOI
[24] Arani A., Manduca A., Ehman R. L., Huston III J., “Harnessing brain waves: A review of brain magnetic resonance elastography for clinicians and scientists entering the field”, The British Journal of Radiology, 94 (2021), 20200265 | DOI
[25] Perkowski Z., Czabak M., “Description of behaviour of timber-concrete composite beams including interlayer slip, uplift, and long-term effects: Formulation of the model and coefficient inverse problem”, Engineering Structures, 194 (2019), 230–250 | DOI
[26] Dudarev V. V., Vatulyan A. O., Mnukhin R. M., Nedin R. D., “Concerning an approach to identifying the Lamé parameters of an elastic functionally graded cylinder”, Mathematical Methods in the Applied Sciences, 43:11 (2020), 6861–6870 | DOI | MR | Zbl
[27] Vatulyan A. O., Dudarev V. V., Mnukhin R. M., “Identification of characteristics of a functionally graded isotropic cylinder”, International Journal of Mechanics and Materials in Design, 17:2 (2021), 321–332 | DOI | MR
[28] Vatulyan A. O., Yurov V. O., “On the reconstruction of material properties of a radially inhomogeneous cylindrical waveguide”, Mathematical Methods in the Applied Sciences, 44:6 (2021), 4756–4769 | DOI | MR | Zbl
[29] Vatulyan A. O., Yurov V. O., “On the determination of the mechanical characteristics of rod elements made of functionally graded materials”, Mechanics of Solids, 55:6 (2020), 907–917 | DOI | DOI | MR
[30] Vatulyan A. O., Inverse Problems in the Mechanics of Deformable Solids, Fizmatlit, M., 2007, 223 pp. (in Russian)