Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_2_a3, author = {L. M. Tsybulya}, title = {Algorithmic search for integer {Abelian} roots of a polynomial with integer {Abelian} coefficients}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {193--199}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a3/} }
TY - JOUR AU - L. M. Tsybulya TI - Algorithmic search for integer Abelian roots of a polynomial with integer Abelian coefficients JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 193 EP - 199 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a3/ LA - ru ID - ISU_2024_24_2_a3 ER -
%0 Journal Article %A L. M. Tsybulya %T Algorithmic search for integer Abelian roots of a polynomial with integer Abelian coefficients %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 193-199 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a3/ %G ru %F ISU_2024_24_2_a3
L. M. Tsybulya. Algorithmic search for integer Abelian roots of a polynomial with integer Abelian coefficients. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 193-199. http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a3/
[1] Borevich Z. I., Shafarevich I. R., Number Theory, Nauka, M., 1985, 503 pp. (in Russian)
[2] Grishin A. V., “On the periodic part of the group of non-degenerate 2x2 matrices”, International Conference Dedicated to the 90th Anniversary of the Department of Higher Algebra of the Faculty of Mechanics and Mathematics of Moscow State University (Moscow, 2019), 26 (in Russian)
[3] Grishin A. V., Tsybulya L. M., “On the torsion in the general linear group and the diagonalization algorithm”, Journal of Mathematical Sciences, 269:4 (2023), 479–491 | DOI | MR | Zbl
[4] Murty M. R., Esmond J., Problems in Algebraic Number Theory, Graduate Texts in Mathematics, 190, Springer New York, New York, 2004, 369 pp. | DOI | MR
[5] Grishin A. V., Prokoptsev A. A., Tsybulya L. M., “Algebra and arithmetic of Abelian integers and computer calculations”, XIII Belarusian Mathematical Conference, Proceedings of the International Scientific Conference (Minsk, November 22–25, 2021), v. 2, Belaruskaya navuka, Minsk, 2021, 38–39 (in Russian)
[6] Greenberg M. J., “An elementary proof of the Kronecker – Weber theorem”, The American Mathematical Monthly, 81:6 (1974), 601–607 | DOI | MR | Zbl
[7] Faddeev D. K., Sominsky I. S., Collection of Problems in Higher Algebra, 10th ed., Nauka. Fizmatlit, M., 1972, 304 pp. (in Russian) | MR